servers/http/result/
prometheus_resp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! prom supply the prometheus HTTP API Server compliance
use std::collections::{BTreeMap, HashMap};

use axum::http::HeaderValue;
use axum::response::{IntoResponse, Response};
use axum::Json;
use common_error::ext::ErrorExt;
use common_error::status_code::StatusCode;
use common_query::{Output, OutputData};
use common_recordbatch::RecordBatches;
use datatypes::prelude::ConcreteDataType;
use datatypes::scalars::ScalarVector;
use datatypes::vectors::{Float64Vector, StringVector, TimestampMillisecondVector};
use promql_parser::label::METRIC_NAME;
use promql_parser::parser::value::ValueType;
use serde::{Deserialize, Serialize};
use serde_json::Value;
use snafu::{OptionExt, ResultExt};

use crate::error::{
    status_code_to_http_status, CollectRecordbatchSnafu, Result, UnexpectedResultSnafu,
};
use crate::http::header::{collect_plan_metrics, GREPTIME_DB_HEADER_METRICS};
use crate::http::prometheus::{
    PromData, PromQueryResult, PromSeriesMatrix, PromSeriesVector, PrometheusResponse,
};

#[derive(Debug, Default, Serialize, Deserialize, PartialEq)]
pub struct PrometheusJsonResponse {
    pub status: String,
    pub data: PrometheusResponse,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub error: Option<String>,
    #[serde(skip_serializing_if = "Option::is_none")]
    #[serde(rename = "errorType")]
    pub error_type: Option<String>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub warnings: Option<Vec<String>>,

    #[serde(skip)]
    pub status_code: Option<StatusCode>,
    // placeholder for header value
    #[serde(skip)]
    #[serde(default)]
    pub resp_metrics: HashMap<String, Value>,
}

impl IntoResponse for PrometheusJsonResponse {
    fn into_response(self) -> Response {
        let metrics = if self.resp_metrics.is_empty() {
            None
        } else {
            serde_json::to_string(&self.resp_metrics).ok()
        };

        let http_code = self.status_code.map(|c| status_code_to_http_status(&c));

        let mut resp = Json(self).into_response();

        if let Some(http_code) = http_code {
            *resp.status_mut() = http_code;
        }

        if let Some(m) = metrics.and_then(|m| HeaderValue::from_str(&m).ok()) {
            resp.headers_mut().insert(&GREPTIME_DB_HEADER_METRICS, m);
        }

        resp
    }
}

impl PrometheusJsonResponse {
    pub fn error<S1>(error_type: StatusCode, reason: S1) -> Self
    where
        S1: Into<String>,
    {
        PrometheusJsonResponse {
            status: "error".to_string(),
            data: PrometheusResponse::default(),
            error: Some(reason.into()),
            error_type: Some(error_type.to_string()),
            warnings: None,
            resp_metrics: Default::default(),
            status_code: Some(error_type),
        }
    }

    pub fn success(data: PrometheusResponse) -> Self {
        PrometheusJsonResponse {
            status: "success".to_string(),
            data,
            error: None,
            error_type: None,
            warnings: None,
            resp_metrics: Default::default(),
            status_code: None,
        }
    }

    /// Convert from `Result<Output>`
    pub async fn from_query_result(
        result: Result<Output>,
        metric_name: String,
        result_type: ValueType,
    ) -> Self {
        let response: Result<Self> = try {
            let result = result?;
            let mut resp =
                match result.data {
                    OutputData::RecordBatches(batches) => Self::success(
                        Self::record_batches_to_data(batches, metric_name, result_type)?,
                    ),
                    OutputData::Stream(stream) => {
                        let record_batches = RecordBatches::try_collect(stream)
                            .await
                            .context(CollectRecordbatchSnafu)?;
                        Self::success(Self::record_batches_to_data(
                            record_batches,
                            metric_name,
                            result_type,
                        )?)
                    }
                    OutputData::AffectedRows(_) => Self::error(
                        StatusCode::Unexpected,
                        "expected data result, but got affected rows",
                    ),
                };

            if let Some(physical_plan) = result.meta.plan {
                let mut result_map = HashMap::new();
                let mut tmp = vec![&mut result_map];
                collect_plan_metrics(&physical_plan, &mut tmp);

                let re = result_map
                    .into_iter()
                    .map(|(k, v)| (k, Value::from(v)))
                    .collect();
                resp.resp_metrics = re;
            }

            resp
        };

        let result_type_string = result_type.to_string();

        match response {
            Ok(resp) => resp,
            Err(err) => {
                // Prometheus won't report error if querying nonexist label and metric
                if err.status_code() == StatusCode::TableNotFound
                    || err.status_code() == StatusCode::TableColumnNotFound
                {
                    Self::success(PrometheusResponse::PromData(PromData {
                        result_type: result_type_string,
                        ..Default::default()
                    }))
                } else {
                    Self::error(err.status_code(), err.output_msg())
                }
            }
        }
    }

    /// Convert [RecordBatches] to [PromData]
    fn record_batches_to_data(
        batches: RecordBatches,
        metric_name: String,
        result_type: ValueType,
    ) -> Result<PrometheusResponse> {
        // infer semantic type of each column from schema.
        // TODO(ruihang): wish there is a better way to do this.
        let mut timestamp_column_index = None;
        let mut tag_column_indices = Vec::new();
        let mut first_field_column_index = None;

        for (i, column) in batches.schema().column_schemas().iter().enumerate() {
            match column.data_type {
                ConcreteDataType::Timestamp(datatypes::types::TimestampType::Millisecond(_)) => {
                    if timestamp_column_index.is_none() {
                        timestamp_column_index = Some(i);
                    }
                }
                // Treat all value types as field
                ConcreteDataType::Float32(_)
                | ConcreteDataType::Float64(_)
                | ConcreteDataType::Int8(_)
                | ConcreteDataType::Int16(_)
                | ConcreteDataType::Int32(_)
                | ConcreteDataType::Int64(_)
                | ConcreteDataType::UInt8(_)
                | ConcreteDataType::UInt16(_)
                | ConcreteDataType::UInt32(_)
                | ConcreteDataType::UInt64(_) => {
                    if first_field_column_index.is_none() {
                        first_field_column_index = Some(i);
                    }
                }
                ConcreteDataType::String(_) => {
                    tag_column_indices.push(i);
                }
                _ => {}
            }
        }

        let timestamp_column_index = timestamp_column_index.context(UnexpectedResultSnafu {
            reason: "no timestamp column found".to_string(),
        })?;
        let first_field_column_index = first_field_column_index.context(UnexpectedResultSnafu {
            reason: "no value column found".to_string(),
        })?;

        let metric_name = (METRIC_NAME.to_string(), metric_name);
        let mut buffer = BTreeMap::<Vec<(String, String)>, Vec<(f64, String)>>::new();

        for batch in batches.iter() {
            // prepare things...
            let tag_columns = tag_column_indices
                .iter()
                .map(|i| {
                    batch
                        .column(*i)
                        .as_any()
                        .downcast_ref::<StringVector>()
                        .unwrap()
                })
                .collect::<Vec<_>>();
            let tag_names = tag_column_indices
                .iter()
                .map(|c| batches.schema().column_name_by_index(*c).to_string())
                .collect::<Vec<_>>();
            let timestamp_column = batch
                .column(timestamp_column_index)
                .as_any()
                .downcast_ref::<TimestampMillisecondVector>()
                .unwrap();
            let casted_field_column = batch
                .column(first_field_column_index)
                .cast(&ConcreteDataType::float64_datatype())
                .unwrap();
            let field_column = casted_field_column
                .as_any()
                .downcast_ref::<Float64Vector>()
                .unwrap();

            // assemble rows
            for row_index in 0..batch.num_rows() {
                // retrieve tags
                // TODO(ruihang): push table name `__metric__`
                let mut tags = vec![metric_name.clone()];
                for (tag_column, tag_name) in tag_columns.iter().zip(tag_names.iter()) {
                    // TODO(ruihang): add test for NULL tag
                    if let Some(tag_value) = tag_column.get_data(row_index) {
                        tags.push((tag_name.to_string(), tag_value.to_string()));
                    }
                }

                // retrieve timestamp
                let timestamp_millis: i64 = timestamp_column.get_data(row_index).unwrap().into();
                let timestamp = timestamp_millis as f64 / 1000.0;

                // retrieve value
                if let Some(v) = field_column.get_data(row_index) {
                    buffer
                        .entry(tags)
                        .or_default()
                        .push((timestamp, Into::<f64>::into(v).to_string()));
                };
            }
        }

        // initialize result to return
        let mut result = match result_type {
            ValueType::Vector => PromQueryResult::Vector(vec![]),
            ValueType::Matrix => PromQueryResult::Matrix(vec![]),
            ValueType::Scalar => PromQueryResult::Scalar(None),
            ValueType::String => PromQueryResult::String(None),
        };

        // accumulate data into result
        buffer.into_iter().for_each(|(tags, mut values)| {
            let metric = tags.into_iter().collect();
            match result {
                PromQueryResult::Vector(ref mut v) => {
                    v.push(PromSeriesVector {
                        metric,
                        value: values.pop(),
                    });
                }
                PromQueryResult::Matrix(ref mut v) => {
                    v.push(PromSeriesMatrix { metric, values });
                }
                PromQueryResult::Scalar(ref mut v) => {
                    *v = values.pop();
                }
                PromQueryResult::String(ref mut _v) => {
                    // TODO(ruihang): Not supported yet
                }
            }
        });

        let result_type_string = result_type.to_string();
        let data = PrometheusResponse::PromData(PromData {
            result_type: result_type_string,
            result,
        });

        Ok(data)
    }
}