script/
table.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Scripts table
use std::sync::Arc;

use api::v1::greptime_request::Request;
use api::v1::value::ValueData;
use api::v1::{
    ColumnDataType, ColumnDef, ColumnSchema as PbColumnSchema, Row, RowInsertRequest,
    RowInsertRequests, Rows, SemanticType,
};
use catalog::error::CompileScriptInternalSnafu;
use common_error::ext::{BoxedError, ErrorExt};
use common_query::OutputData;
use common_recordbatch::{util as record_util, RecordBatch, SendableRecordBatchStream};
use common_telemetry::{debug, info, warn};
use common_time::util;
use datafusion::datasource::DefaultTableSource;
use datafusion::logical_expr::{and, col, lit};
use datafusion_common::TableReference;
use datafusion_expr::LogicalPlanBuilder;
use datatypes::prelude::ScalarVector;
use datatypes::vectors::{StringVector, Vector};
use query::QueryEngineRef;
use servers::query_handler::grpc::GrpcQueryHandlerRef;
use session::context::{QueryContextBuilder, QueryContextRef};
use snafu::{ensure, OptionExt, ResultExt};
use table::metadata::TableInfo;
use table::table::adapter::DfTableProviderAdapter;
use table::TableRef;

use crate::error::{
    BuildDfLogicalPlanSnafu, CastTypeSnafu, CollectRecordsSnafu, ExecuteInternalStatementSnafu,
    FindColumnInScriptsTableSnafu, InsertScriptSnafu, Result, ScriptNotFoundSnafu,
};
use crate::python::PyScript;

pub const SCRIPTS_TABLE_NAME: &str = "scripts";

pub type ScriptsTableRef<E> = Arc<ScriptsTable<E>>;

/// The scripts table that keeps the script content etc.
pub struct ScriptsTable<E: ErrorExt + Send + Sync + 'static> {
    table: TableRef,
    grpc_handler: GrpcQueryHandlerRef<E>,
    query_engine: QueryEngineRef,
}

impl<E: ErrorExt + Send + Sync + 'static> ScriptsTable<E> {
    /// Create a new `[ScriptsTable]` based on the table.
    pub fn new(
        table: TableRef,
        grpc_handler: GrpcQueryHandlerRef<E>,
        query_engine: QueryEngineRef,
    ) -> Self {
        Self {
            table,
            grpc_handler,
            query_engine,
        }
    }

    fn get_str_col_by_name<'a>(record: &'a RecordBatch, name: &str) -> Result<&'a StringVector> {
        let column = record
            .column_by_name(name)
            .with_context(|| FindColumnInScriptsTableSnafu { name })?;
        let column = column
            .as_any()
            .downcast_ref::<StringVector>()
            .with_context(|| CastTypeSnafu {
                msg: format!(
                    "can't downcast {:?} array into string vector",
                    column.data_type()
                ),
            })?;
        Ok(column)
    }
    /// this is used as a callback function when scripts table is created. `table` should be `scripts` table.
    /// the function will try it best to register all scripts, and ignore the error in parsing and register scripts
    ///  if any, just emit a warning
    /// TODO(discord9): rethink error handling here
    pub async fn recompile_register_udf(
        table: TableRef,
        query_engine: QueryEngineRef,
    ) -> catalog::error::Result<()> {
        let table_info = table.table_info();

        let rbs = Self::table_full_scan(table, &query_engine)
            .await
            .map_err(BoxedError::new)
            .context(CompileScriptInternalSnafu)?;
        let records = record_util::collect(rbs)
            .await
            .map_err(BoxedError::new)
            .context(CompileScriptInternalSnafu)?;

        let mut script_list: Vec<(String, String)> = Vec::new();
        for record in records {
            let names = Self::get_str_col_by_name(&record, "name")
                .map_err(BoxedError::new)
                .context(CompileScriptInternalSnafu)?;
            let scripts = Self::get_str_col_by_name(&record, "script")
                .map_err(BoxedError::new)
                .context(CompileScriptInternalSnafu)?;

            let part_of_scripts_list =
                names
                    .iter_data()
                    .zip(scripts.iter_data())
                    .filter_map(|i| match i {
                        (Some(a), Some(b)) => Some((a.to_string(), b.to_string())),
                        _ => None,
                    });
            script_list.extend(part_of_scripts_list);
        }

        info!(
            "Found {} scripts in {}",
            script_list.len(),
            table_info.full_table_name()
        );

        for (name, script) in script_list {
            match PyScript::from_script(&script, query_engine.clone()) {
                Ok(script) => {
                    script.register_udf().await;
                    debug!(
                        "Script in `scripts` system table re-register as UDF: {}",
                        name
                    );
                }
                Err(err) => {
                    warn!(
                        r#"Failed to compile script "{}"" in `scripts` table: {:?}"#,
                        name, err
                    );
                }
            }
        }
        Ok(())
    }

    pub async fn insert(&self, schema: &str, name: &str, script: &str) -> Result<()> {
        let now = util::current_time_millis();

        let table_info = self.table.table_info();

        let insert = RowInsertRequest {
            table_name: SCRIPTS_TABLE_NAME.to_string(),
            rows: Some(Rows {
                schema: build_insert_column_schemas(),
                rows: vec![Row {
                    values: vec![
                        ValueData::StringValue(schema.to_string()).into(),
                        ValueData::StringValue(name.to_string()).into(),
                        // TODO(dennis): we only supports python right now.
                        ValueData::StringValue("python".to_string()).into(),
                        ValueData::StringValue(script.to_string()).into(),
                        // Timestamp in key part is intentionally left to 0
                        ValueData::TimestampMillisecondValue(0).into(),
                        ValueData::TimestampMillisecondValue(now).into(),
                    ],
                }],
            }),
        };

        let requests = RowInsertRequests {
            inserts: vec![insert],
        };

        let output = self
            .grpc_handler
            .do_query(Request::RowInserts(requests), query_ctx(&table_info))
            .await
            .map_err(BoxedError::new)
            .context(InsertScriptSnafu { name })?;

        info!(
            "Inserted script: {} into scripts table: {}, output: {:?}.",
            name,
            table_info.full_table_name(),
            output
        );

        Ok(())
    }

    pub async fn find_script_by_name(&self, schema: &str, name: &str) -> Result<String> {
        let table_info = self.table.table_info();

        let table_name = TableReference::full(
            table_info.catalog_name.clone(),
            table_info.schema_name.clone(),
            table_info.name.clone(),
        );

        let table_provider = Arc::new(DfTableProviderAdapter::new(self.table.clone()));
        let table_source = Arc::new(DefaultTableSource::new(table_provider));

        let plan = LogicalPlanBuilder::scan(table_name, table_source, None)
            .context(BuildDfLogicalPlanSnafu)?
            .filter(and(
                col("schema").eq(lit(schema)),
                col("name").eq(lit(name)),
            ))
            .context(BuildDfLogicalPlanSnafu)?
            .project(vec![col("script")])
            .context(BuildDfLogicalPlanSnafu)?
            .build()
            .context(BuildDfLogicalPlanSnafu)?;

        let output = self
            .query_engine
            .execute(plan, query_ctx(&table_info))
            .await
            .context(ExecuteInternalStatementSnafu)?;
        let stream = match output.data {
            OutputData::Stream(stream) => stream,
            OutputData::RecordBatches(record_batches) => record_batches.as_stream(),
            _ => unreachable!(),
        };

        let records = record_util::collect(stream)
            .await
            .context(CollectRecordsSnafu)?;

        ensure!(!records.is_empty(), ScriptNotFoundSnafu { name });

        assert_eq!(records.len(), 1);
        assert_eq!(records[0].num_columns(), 1);

        let script_column = records[0].column(0);
        let script_column = script_column
            .as_any()
            .downcast_ref::<StringVector>()
            .with_context(|| CastTypeSnafu {
                msg: format!(
                    "can't downcast {:?} array into string vector",
                    script_column.data_type()
                ),
            })?;

        assert_eq!(script_column.len(), 1);

        // Safety: asserted above
        Ok(script_column.get_data(0).unwrap().to_string())
    }

    async fn table_full_scan(
        table: TableRef,
        query_engine: &QueryEngineRef,
    ) -> Result<SendableRecordBatchStream> {
        let table_info = table.table_info();
        let table_name = TableReference::full(
            table_info.catalog_name.clone(),
            table_info.schema_name.clone(),
            table_info.name.clone(),
        );

        let table_provider = Arc::new(DfTableProviderAdapter::new(table));
        let table_source = Arc::new(DefaultTableSource::new(table_provider));

        let plan = LogicalPlanBuilder::scan(table_name, table_source, None)
            .context(BuildDfLogicalPlanSnafu)?
            .build()
            .context(BuildDfLogicalPlanSnafu)?;

        let output = query_engine
            .execute(plan, query_ctx(&table_info))
            .await
            .context(ExecuteInternalStatementSnafu)?;
        let stream = match output.data {
            OutputData::Stream(stream) => stream,
            OutputData::RecordBatches(record_batches) => record_batches.as_stream(),
            _ => unreachable!(),
        };
        Ok(stream)
    }
}

/// Build the inserted column schemas
fn build_insert_column_schemas() -> Vec<PbColumnSchema> {
    vec![
        // The schema that script belongs to.
        PbColumnSchema {
            column_name: "schema".to_string(),
            datatype: ColumnDataType::String.into(),
            semantic_type: SemanticType::Tag.into(),
            ..Default::default()
        },
        PbColumnSchema {
            column_name: "name".to_string(),
            datatype: ColumnDataType::String.into(),
            semantic_type: SemanticType::Tag.into(),
            ..Default::default()
        },
        PbColumnSchema {
            column_name: "engine".to_string(),
            datatype: ColumnDataType::String.into(),
            semantic_type: SemanticType::Tag.into(),
            ..Default::default()
        },
        PbColumnSchema {
            column_name: "script".to_string(),
            datatype: ColumnDataType::String.into(),
            semantic_type: SemanticType::Field.into(),
            ..Default::default()
        },
        PbColumnSchema {
            column_name: "greptime_timestamp".to_string(),
            datatype: ColumnDataType::TimestampMillisecond.into(),
            semantic_type: SemanticType::Timestamp.into(),
            ..Default::default()
        },
        PbColumnSchema {
            column_name: "gmt_modified".to_string(),
            datatype: ColumnDataType::TimestampMillisecond.into(),
            semantic_type: SemanticType::Field.into(),
            ..Default::default()
        },
    ]
}

fn query_ctx(table_info: &TableInfo) -> QueryContextRef {
    QueryContextBuilder::default()
        .current_catalog(table_info.catalog_name.to_string())
        .current_schema(table_info.schema_name.to_string())
        .build()
        .into()
}

/// Builds scripts schema, returns (time index, primary keys, column defs)
pub fn build_scripts_schema() -> (String, Vec<String>, Vec<ColumnDef>) {
    let cols = build_insert_column_schemas();

    let time_index = cols
        .iter()
        .find_map(|c| {
            (c.semantic_type == (SemanticType::Timestamp as i32)).then(|| c.column_name.clone())
        })
        .unwrap(); // Safety: the column always exists

    let primary_keys = cols
        .iter()
        .filter(|c| (c.semantic_type == (SemanticType::Tag as i32)))
        .map(|c| c.column_name.clone())
        .collect();

    let column_defs = cols
        .into_iter()
        .map(|c| ColumnDef {
            name: c.column_name,
            data_type: c.datatype,
            is_nullable: false,
            default_constraint: vec![],
            semantic_type: c.semantic_type,
            comment: "".to_string(),
            datatype_extension: None,
            options: c.options,
        })
        .collect();

    (time_index, primary_keys, column_defs)
}