script/python/rspython/
dataframe_impl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use rustpython_vm::class::PyClassImpl;
use rustpython_vm::{pymodule as rspymodule, VirtualMachine};

use crate::python::rspython::builtins::greptime_builtin::PyDataFrame;
pub(crate) fn init_data_frame(module_name: &str, vm: &mut VirtualMachine) {
    let _ = PyDataFrame::make_class(&vm.ctx);
    let _ = data_frame::PyExpr::make_class(&vm.ctx);
    vm.add_native_module(module_name.to_owned(), Box::new(data_frame::make_module));
}
/// with `register_batch`, and then wrap DataFrame API in it
#[rspymodule]
pub(crate) mod data_frame {
    use common_recordbatch::{DfRecordBatch, RecordBatch};
    use datafusion::dataframe::DataFrame as DfDataFrame;
    use datafusion::execution::context::SessionContext;
    use datafusion_expr::Expr as DfExpr;
    use rustpython_vm::convert::ToPyResult;
    use rustpython_vm::function::PyComparisonValue;
    use rustpython_vm::protocol::PyNumberMethods;
    use rustpython_vm::types::{AsNumber, Comparable, PyComparisonOp};
    use rustpython_vm::{
        pyclass as rspyclass, PyObject, PyObjectRef, PyPayload, PyRef, PyResult, VirtualMachine,
    };
    use snafu::ResultExt;

    use crate::python::error::DataFusionSnafu;
    use crate::python::ffi_types::py_recordbatch::PyRecordBatch;
    use crate::python::rspython::builtins::greptime_builtin::{
        lit, query as get_query_engine, PyDataFrame,
    };
    use crate::python::rspython::utils::obj_cast_to;
    use crate::python::utils::block_on_async;

    impl From<DfDataFrame> for PyDataFrame {
        fn from(inner: DfDataFrame) -> Self {
            Self { inner }
        }
    }
    /// set DataFrame instance into current scope with given name
    pub fn set_dataframe_in_scope(
        scope: &rustpython_vm::scope::Scope,
        vm: &VirtualMachine,
        name: &str,
        rb: &RecordBatch,
    ) -> crate::python::error::Result<()> {
        let df = PyDataFrame::from_record_batch(rb.df_record_batch())?;
        scope
            .locals
            .set_item(name, vm.new_pyobj(df), vm)
            .map_err(|e| crate::python::utils::format_py_error(e, vm))
    }
    #[rspyclass]
    impl PyDataFrame {
        #[pymethod]
        fn from_sql(sql: String, vm: &VirtualMachine) -> PyResult<Self> {
            let query_engine = get_query_engine(vm)?;
            let rb = query_engine.sql_to_rb(sql.clone()).map_err(|e| {
                vm.new_runtime_error(format!("failed to execute sql: {:?}, error: {:?}", sql, e))
            })?;
            let ctx = SessionContext::new();
            ctx.read_batch(rb.df_record_batch().clone())
                .map_err(|e| vm.new_runtime_error(format!("{e:?}")))
                .map(|df| df.into())
        }
        /// TODO(discord9): error handling
        fn from_record_batch(rb: &DfRecordBatch) -> crate::python::error::Result<Self> {
            let ctx = SessionContext::new();
            let inner = ctx.read_batch(rb.clone()).context(DataFusionSnafu)?;
            Ok(Self { inner })
        }

        #[pymethod]
        fn select_columns(&self, columns: Vec<String>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .select_columns(&columns.iter().map(AsRef::as_ref).collect::<Vec<&str>>())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn select(&self, expr_list: Vec<PyExprRef>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .select(expr_list.iter().map(|e| e.inner.clone()).collect())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn filter(&self, predicate: PyExprRef, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .filter(predicate.inner.clone())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn aggregate(
            &self,
            group_expr: Vec<PyExprRef>,
            aggr_expr: Vec<PyExprRef>,
            vm: &VirtualMachine,
        ) -> PyResult<Self> {
            let ret = self.inner.clone().aggregate(
                group_expr.iter().map(|i| i.inner.clone()).collect(),
                aggr_expr.iter().map(|i| i.inner.clone()).collect(),
            );
            Ok(ret.map_err(|e| vm.new_runtime_error(e.to_string()))?.into())
        }

        #[pymethod]
        fn limit(&self, skip: usize, fetch: Option<usize>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .limit(skip, fetch)
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn union(&self, df: PyRef<PyDataFrame>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .union(df.inner.clone())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn union_distinct(&self, df: PyRef<PyDataFrame>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .union_distinct(df.inner.clone())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn distinct(&self, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .distinct()
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn sort(&self, expr: Vec<PyExprRef>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .sort(expr.iter().map(|e| e.inner.clone()).collect())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn join(
            &self,
            right: PyRef<PyDataFrame>,
            join_type: String,
            left_cols: Vec<String>,
            right_cols: Vec<String>,
            filter: Option<PyExprRef>,
            vm: &VirtualMachine,
        ) -> PyResult<Self> {
            use datafusion::prelude::JoinType;
            let join_type = match join_type.as_str() {
                "inner" | "Inner" => JoinType::Inner,
                "left" | "Left" => JoinType::Left,
                "right" | "Right" => JoinType::Right,
                "full" | "Full" => JoinType::Full,
                "leftSemi" | "LeftSemi" => JoinType::LeftSemi,
                "rightSemi" | "RightSemi" => JoinType::RightSemi,
                "leftAnti" | "LeftAnti" => JoinType::LeftAnti,
                "rightAnti" | "RightAnti" => JoinType::RightAnti,
                _ => return Err(vm.new_runtime_error(format!("Unknown join type: {join_type}"))),
            };
            let left_cols: Vec<&str> = left_cols.iter().map(AsRef::as_ref).collect();
            let right_cols: Vec<&str> = right_cols.iter().map(AsRef::as_ref).collect();
            let filter = filter.map(|f| f.inner.clone());
            Ok(self
                .inner
                .clone()
                .join(
                    right.inner.clone(),
                    join_type,
                    &left_cols,
                    &right_cols,
                    filter,
                )
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn intersect(&self, df: PyRef<PyDataFrame>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .intersect(df.inner.clone())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        fn except(&self, df: PyRef<PyDataFrame>, vm: &VirtualMachine) -> PyResult<Self> {
            Ok(self
                .inner
                .clone()
                .except(df.inner.clone())
                .map_err(|e| vm.new_runtime_error(e.to_string()))?
                .into())
        }

        #[pymethod]
        /// collect `DataFrame` results into `PyRecordBatch` that impl Mapping Protocol
        fn collect(&self, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
            let inner = self.inner.clone();
            let res = block_on_async(async { inner.collect().await });
            let res = res
                .map_err(|e| vm.new_runtime_error(format!("{e:?}")))?
                .map_err(|e| vm.new_runtime_error(e.to_string()))?;
            if res.is_empty() {
                return Ok(vm.ctx.new_dict().into());
            }
            let concat_rb =
                arrow::compute::concat_batches(&res[0].schema(), res.iter()).map_err(|e| {
                    vm.new_runtime_error(format!(
                        "Concat batches failed for dataframe {self:?}: {e}"
                    ))
                })?;

            // we are inside a macro, so using full path
            let schema = datatypes::schema::Schema::try_from(concat_rb.schema()).map_err(|e| {
                vm.new_runtime_error(format!(
                    "Convert to Schema failed for dataframe {self:?}: {e}"
                ))
            })?;
            let rb =
                RecordBatch::try_from_df_record_batch(schema.into(), concat_rb).map_err(|e| {
                    vm.new_runtime_error(format!(
                        "Convert to RecordBatch failed for dataframe {self:?}: {e}"
                    ))
                })?;

            let rb = PyRecordBatch::new(rb);
            Ok(rb.into_pyobject(vm))
        }
    }

    #[rspyclass(module = "data_frame", name = "PyExpr")]
    #[derive(PyPayload, Debug, Clone)]
    pub struct PyExpr {
        pub inner: DfExpr,
    }

    // TODO(discord9): lit function that take PyObject and turn it into ScalarValue

    pub(crate) type PyExprRef = PyRef<PyExpr>;

    impl From<datafusion_expr::Expr> for PyExpr {
        fn from(value: DfExpr) -> Self {
            Self { inner: value }
        }
    }

    impl Comparable for PyExpr {
        fn slot_richcompare(
            zelf: &PyObject,
            other: &PyObject,
            op: PyComparisonOp,
            vm: &VirtualMachine,
        ) -> PyResult<rustpython_vm::function::Either<PyObjectRef, PyComparisonValue>> {
            if let Some(zelf) = zelf.downcast_ref::<Self>() {
                let ret = zelf.richcompare(other.to_owned(), op, vm)?;
                let ret = ret.into_pyobject(vm);
                Ok(rustpython_vm::function::Either::A(ret))
            } else {
                Err(vm.new_type_error(format!(
                    "unexpected payload {zelf:?} and {other:?} for op {}",
                    op.method_name(&vm.ctx).as_str()
                )))
            }
        }
        fn cmp(
            _zelf: &rustpython_vm::Py<Self>,
            _other: &PyObject,
            _op: PyComparisonOp,
            _vm: &VirtualMachine,
        ) -> PyResult<PyComparisonValue> {
            Ok(PyComparisonValue::NotImplemented)
        }
    }

    impl AsNumber for PyExpr {
        fn as_number() -> &'static PyNumberMethods {
            static AS_NUMBER: PyNumberMethods = PyNumberMethods {
                and: Some(|a, b, vm| PyExpr::and(a.to_owned(), b.to_owned(), vm).to_pyresult(vm)),
                or: Some(|a, b, vm| PyExpr::or(a.to_owned(), b.to_owned(), vm).to_pyresult(vm)),
                invert: Some(|a, vm| PyExpr::invert((*a).to_owned(), vm).to_pyresult(vm)),

                ..PyNumberMethods::NOT_IMPLEMENTED
            };
            &AS_NUMBER
        }
    }

    #[rspyclass(with(Comparable, AsNumber))]
    impl PyExpr {
        fn richcompare(
            &self,
            other: PyObjectRef,
            op: PyComparisonOp,
            vm: &VirtualMachine,
        ) -> PyResult<Self> {
            let other = if let Some(other) = other.downcast_ref::<Self>() {
                other.to_owned()
            } else {
                lit(other, vm)?
            };
            let f = match op {
                PyComparisonOp::Eq => DfExpr::eq,
                PyComparisonOp::Ne => DfExpr::not_eq,
                PyComparisonOp::Gt => DfExpr::gt,
                PyComparisonOp::Lt => DfExpr::lt,
                PyComparisonOp::Ge => DfExpr::gt_eq,
                PyComparisonOp::Le => DfExpr::lt_eq,
            };
            Ok(f(self.inner.clone(), other.inner.clone()).into())
        }
        #[pymethod]
        fn alias(&self, name: String) -> PyResult<PyExpr> {
            Ok(self.inner.clone().alias(name).into())
        }

        #[pymethod(magic)]
        fn and(zelf: PyObjectRef, other: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyExpr> {
            let zelf = obj_cast_to::<Self>(zelf, vm)?;
            let other = obj_cast_to::<Self>(other, vm)?;
            Ok(zelf.inner.clone().and(other.inner.clone()).into())
        }
        #[pymethod(magic)]
        fn or(zelf: PyObjectRef, other: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyExpr> {
            let zelf = obj_cast_to::<Self>(zelf, vm)?;
            let other = obj_cast_to::<Self>(other, vm)?;
            Ok(zelf.inner.clone().or(other.inner.clone()).into())
        }

        /// `~` operator, return `!self`
        #[pymethod(magic)]
        fn invert(zelf: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyExpr> {
            let zelf = obj_cast_to::<Self>(zelf, vm)?;
            Ok((!zelf.inner.clone()).into())
        }

        /// sort ascending&nulls_first
        #[pymethod]
        fn sort(&self) -> PyExpr {
            self.inner.clone().sort(true, true).into()
        }
    }
}