script/python/rspython/
builtins.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//!  Builtin module contains GreptimeDB builtin udf/udaf

#[cfg(test)]
mod test;

use datafusion_common::{DataFusionError, ScalarValue};
use datafusion_expr::ColumnarValue as DFColValue;
use datafusion_physical_expr::AggregateExpr;
use datatypes::arrow::array::ArrayRef;
use datatypes::arrow::compute;
use datatypes::arrow::datatypes::DataType as ArrowDataType;
use datatypes::vectors::Helper as HelperVec;
use rustpython_vm::builtins::{PyBaseExceptionRef, PyBool, PyFloat, PyInt, PyList, PyStr};
use rustpython_vm::{pymodule, AsObject, PyObjectRef, PyPayload, PyResult, VirtualMachine};

use crate::python::ffi_types::PyVector;
use crate::python::rspython::utils::is_instance;

pub fn init_greptime_builtins(module_name: &str, vm: &mut VirtualMachine) {
    vm.add_native_module(
        module_name.to_string(),
        Box::new(greptime_builtin::make_module),
    );
}

/// "Can't cast operand of type `{name}` into `{ty}`."
fn type_cast_error(name: &str, ty: &str, vm: &VirtualMachine) -> PyBaseExceptionRef {
    vm.new_type_error(format!("Can't cast operand of type `{name}` into `{ty}`."))
}

fn collect_diff_types_string(values: &[ScalarValue], ty: &ArrowDataType) -> String {
    values
        .iter()
        .enumerate()
        .filter_map(|(idx, val)| {
            if val.data_type() != *ty {
                Some((idx, val.data_type()))
            } else {
                None
            }
        })
        .map(|(idx, ty)| format!(" {:?} at {}th location\n", ty, idx + 1))
        .reduce(|mut acc, item| {
            acc.push_str(&item);
            acc
        })
        .unwrap_or_else(|| "Nothing".to_string())
}

/// try to turn a Python Object into a PyVector or a scalar that can be use for calculate
///
/// supported scalar are(leftside is python data type, right side is rust type):
///
/// | Python |  Rust  |
/// | ------ | ------ |
/// | integer| i64    |
/// | float  | f64    |
/// | str    | String |
/// | bool   | bool   |
/// | vector | array  |
/// | list   | `ScalarValue::List` |
pub fn try_into_columnar_value(obj: PyObjectRef, vm: &VirtualMachine) -> PyResult<DFColValue> {
    if is_instance::<PyVector>(&obj, vm) {
        let ret = obj
            .payload::<PyVector>()
            .ok_or_else(|| type_cast_error(&obj.class().name(), "vector", vm))?;
        Ok(DFColValue::Array(ret.to_arrow_array()))
    } else if is_instance::<PyBool>(&obj, vm) {
        // Note that a `PyBool` is also a `PyInt`, so check if it is a bool first to get a more precise type
        let ret = obj.try_into_value::<bool>(vm)?;
        Ok(DFColValue::Scalar(ScalarValue::Boolean(Some(ret))))
    } else if is_instance::<PyStr>(&obj, vm) {
        let ret = obj.try_into_value::<String>(vm)?;
        Ok(DFColValue::Scalar(ScalarValue::Utf8(Some(ret))))
    } else if is_instance::<PyInt>(&obj, vm) {
        let ret = obj.try_into_value::<i64>(vm)?;
        Ok(DFColValue::Scalar(ScalarValue::Int64(Some(ret))))
    } else if is_instance::<PyFloat>(&obj, vm) {
        let ret = obj.try_into_value::<f64>(vm)?;
        Ok(DFColValue::Scalar(ScalarValue::Float64(Some(ret))))
    } else if is_instance::<PyList>(&obj, vm) {
        let ret = obj
            .payload::<PyList>()
            .ok_or_else(|| type_cast_error(&obj.class().name(), "vector", vm))?;
        let ret: Vec<ScalarValue> = ret
            .borrow_vec()
            .iter()
            .map(|obj| -> PyResult<ScalarValue> {
                let col = try_into_columnar_value(obj.clone(), vm)?;
                match col {
                    DFColValue::Array(arr) => Err(vm.new_type_error(format!(
                        "Expect only scalar value in a list, found a vector of type {:?} nested in list", arr.data_type()
                    ))),
                    DFColValue::Scalar(val) => Ok(val),
                }
            })
            .collect::<Result<_, _>>()?;

        if ret.is_empty() {
            // TODO(dennis): empty list, we set type as null.
            return Ok(DFColValue::Scalar(ScalarValue::List(
                ScalarValue::new_list(&[], &ArrowDataType::Null),
            )));
        }

        let ty = ret[0].data_type();
        if ret.iter().any(|i| i.data_type() != ty) {
            return Err(vm.new_type_error(format!(
                "All elements in a list should be same type to cast to Datafusion list!\nExpect {ty:?}, found {}",
                collect_diff_types_string(&ret, &ty)
            )));
        }
        Ok(DFColValue::Scalar(ScalarValue::List(
            ScalarValue::new_list(&ret, &ty),
        )))
    } else {
        Err(vm.new_type_error(format!(
            "Can't cast object of type {} into vector or scalar",
            obj.class().name()
        )))
    }
}

/// cast a columnar value into python object
///
/// | Rust   | Python          |
/// | ------ | --------------- |
/// | Array  | PyVector        |
/// | Scalar | int/float/bool  |
fn try_into_py_obj(col: DFColValue, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
    match col {
        DFColValue::Array(arr) => {
            let ret = PyVector::from(
                HelperVec::try_into_vector(arr)
                    .map_err(|err| vm.new_type_error(format!("Unsupported type: {err:#?}")))?,
            )
            .into_pyobject(vm);
            Ok(ret)
        }
        DFColValue::Scalar(val) => scalar_val_try_into_py_obj(val, vm),
    }
}

/// turn a ScalarValue into a Python Object, currently support
///
/// ScalarValue -> Python Type
/// - Float64 -> PyFloat
/// - Int64 -> PyInt
/// - UInt64 -> PyInt
/// - List -> PyList(of inner ScalarValue)
fn scalar_val_try_into_py_obj(val: ScalarValue, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
    match val {
        ScalarValue::Float32(Some(v)) => Ok(vm.ctx.new_float(v.into()).into()),
        ScalarValue::Float64(Some(v)) => Ok(PyFloat::from(v).into_pyobject(vm)),
        ScalarValue::Int64(Some(v)) => Ok(PyInt::from(v).into_pyobject(vm)),
        ScalarValue::UInt64(Some(v)) => Ok(PyInt::from(v).into_pyobject(vm)),
        ScalarValue::List(list) => {
            let list = ScalarValue::convert_array_to_scalar_vec(list.as_ref())
                .map_err(|e| from_df_err(e, vm))?
                .into_iter()
                .flatten()
                .map(|v| scalar_val_try_into_py_obj(v, vm))
                .collect::<Result<_, _>>()?;
            let list = vm.ctx.new_list(list);
            Ok(list.into())
        }
        _ => Err(vm.new_type_error(format!(
            "Can't cast a Scalar Value `{val:#?}` of type {:#?} to a Python Object",
            val.data_type()
        ))),
    }
}

/// Because most of the datafusion's UDF only support f32/64, so cast all to f64 to use datafusion's UDF
fn all_to_f64(col: DFColValue, vm: &VirtualMachine) -> PyResult<DFColValue> {
    match col {
        DFColValue::Array(arr) => {
            let res = compute::cast(&arr, &ArrowDataType::Float64).map_err(|err| {
                vm.new_type_error(format!(
                    "Arrow Type Cast Fail(from {:#?} to {:#?}): {err:#?}",
                    arr.data_type(),
                    ArrowDataType::Float64
                ))
            })?;
            Ok(DFColValue::Array(res))
        }
        DFColValue::Scalar(val) => {
            let val_in_f64 = match val {
                ScalarValue::Float64(Some(v)) => v,
                ScalarValue::Int64(Some(v)) => v as f64,
                ScalarValue::Boolean(Some(v)) => v as i64 as f64,
                _ => {
                    return Err(vm.new_type_error(format!(
                        "Can't cast type {:#?} to {:#?}",
                        val.data_type(),
                        ArrowDataType::Float64
                    )))
                }
            };
            Ok(DFColValue::Scalar(ScalarValue::Float64(Some(val_in_f64))))
        }
    }
}

/// use to bind to Data Fusion's UDF function
/// P.S: seems due to proc macro issues, can't just use `#[pyfunction]` in here
macro_rules! bind_call_unary_math_function {
    ($DF_FUNC: ident, $vm: ident $(,$ARG: ident)*) => {
        fn inner_fn($($ARG: PyObjectRef,)* vm: &VirtualMachine) -> PyResult<PyObjectRef> {
            let args = &[$(all_to_f64(try_into_columnar_value($ARG, vm)?, vm)?,)*];
            datafusion_functions::math::$DF_FUNC()
                .invoke(args)
                .map_err(|e| from_df_err(e, vm))
                .and_then(|x| try_into_py_obj(x, vm))
        }
        return inner_fn($($ARG,)* $vm);
    };
}

/// The macro for binding function in `datafusion_physical_expr::expressions`(most of them are aggregate function)
///
/// - first arguments is the name of datafusion expression function like `Avg`
/// - second is the python virtual machine ident `vm`
/// - following is the actual args passing in(as a slice).i.e.`&[values.to_arrow_array()]`
/// - the data type of passing in args, i.e: `Datatype::Float64`
/// - lastly ARE names given to expr of those function, i.e. `expr0, expr1,`....
macro_rules! bind_aggr_fn {
    ($AGGR_FUNC: ident, $VM: ident, $ARGS:expr, $DATA_TYPE: expr $(, $EXPR_ARGS: ident)*) => {
        // just a place holder, we just want the inner `XXXAccumulator`'s function
        // so its expr is irrelevant
        return eval_aggr_fn(
            expressions::$AGGR_FUNC::new(
                $(
                    Arc::new(expressions::Column::new(stringify!($EXPR_ARGS), 0)) as _,
                )*
                    stringify!($AGGR_FUNC), $DATA_TYPE.clone()),
            $ARGS, $VM)
    };
}

#[inline]
fn from_df_err(err: DataFusionError, vm: &VirtualMachine) -> PyBaseExceptionRef {
    vm.new_runtime_error(format!("Data Fusion Error: {err:#?}"))
}

/// evaluate Aggregate Expr using its backing accumulator
fn eval_aggr_fn<T: AggregateExpr>(
    aggr: T,
    values: &[ArrayRef],
    vm: &VirtualMachine,
) -> PyResult<PyObjectRef> {
    // acquire the accumulator, where the actual implement of aggregate expr layers
    let mut acc = aggr
        .create_accumulator()
        .map_err(|err| from_df_err(err, vm))?;
    acc.update_batch(values)
        .map_err(|err| from_df_err(err, vm))?;
    let res = acc.evaluate().map_err(|err| from_df_err(err, vm))?;
    scalar_val_try_into_py_obj(res, vm)
}

/// GrepTime User Define Function module
///
/// allow Python Coprocessor Function to use already implemented udf functions from datafusion and GrepTime DB itself
///
#[pymodule]
pub(crate) mod greptime_builtin {
    // P.S.: not extract to file because not-inlined proc macro attribute is *unstable*
    use std::sync::Arc;

    use arrow::compute::kernels::{aggregate, boolean};
    use common_function::function::{Function, FunctionContext, FunctionRef};
    use common_function::function_registry::FUNCTION_REGISTRY;
    use common_function::scalars::math::PowFunction;
    use datafusion::arrow::datatypes::DataType as ArrowDataType;
    use datafusion::dataframe::DataFrame as DfDataFrame;
    use datafusion::physical_plan::expressions;
    use datafusion_expr::{ColumnarValue as DFColValue, Expr as DfExpr};
    use datatypes::arrow::array::{ArrayRef, Int64Array, NullArray};
    use datatypes::arrow::error::ArrowError;
    use datatypes::arrow::{self, compute};
    use datatypes::vectors::{ConstantVector, Float64Vector, Helper, Int64Vector, VectorRef};
    use paste::paste;
    use rustpython_vm::builtins::{PyFloat, PyFunction, PyInt, PyStr};
    use rustpython_vm::function::{FuncArgs, KwArgs, OptionalArg};
    use rustpython_vm::{
        pyclass, AsObject, PyObjectRef, PyPayload, PyRef, PyResult, VirtualMachine,
    };

    use crate::python::ffi_types::copr::PyQueryEngine;
    use crate::python::ffi_types::vector::val_to_pyobj;
    use crate::python::ffi_types::{PyVector, PyVectorRef};
    use crate::python::rspython::builtins::{
        all_to_f64, eval_aggr_fn, from_df_err, try_into_columnar_value, try_into_py_obj,
        type_cast_error,
    };
    use crate::python::rspython::dataframe_impl::data_frame::{PyExpr, PyExprRef};
    use crate::python::rspython::utils::{is_instance, py_obj_to_value, py_obj_to_vec};

    #[pyattr]
    #[pyclass(module = "greptime_builtin", name = "PyDataFrame")]
    #[derive(PyPayload, Debug, Clone)]
    pub struct PyDataFrame {
        pub inner: DfDataFrame,
    }

    /// get `__dataframe__` from globals and return it
    /// TODO(discord9): this is a terrible hack, we should find a better way to get `__dataframe__`
    #[pyfunction]
    fn dataframe(vm: &VirtualMachine) -> PyResult<PyDataFrame> {
        let df = vm.current_globals().get_item("__dataframe__", vm)?;
        let df = df
            .payload::<PyDataFrame>()
            .ok_or_else(|| vm.new_type_error(format!("object {:?} is not a DataFrame", df)))?;
        let df = df.clone();
        Ok(df)
    }

    /// get `__query__` from globals and return it
    /// TODO(discord9): this is a terrible hack, we should find a better way to get `__query__`
    #[pyfunction]
    pub(crate) fn query(vm: &VirtualMachine) -> PyResult<PyQueryEngine> {
        let query_engine = vm.current_globals().get_item("__query__", vm)?;
        let query_engine = query_engine.payload::<PyQueryEngine>().ok_or_else(|| {
            vm.new_type_error(format!("object {:?} is not a QueryEngine", query_engine))
        })?;
        let query_engine = query_engine.clone();
        Ok(query_engine)
    }

    #[pyfunction]
    fn vector(args: OptionalArg<PyObjectRef>, vm: &VirtualMachine) -> PyResult<PyVector> {
        PyVector::new(args, vm)
    }

    #[pyfunction]
    fn col(name: String, vm: &VirtualMachine) -> PyExprRef {
        let expr: PyExpr = DfExpr::Column(datafusion_common::Column::from_name(name)).into();
        expr.into_ref(&vm.ctx)
    }

    #[pyfunction]
    pub(crate) fn lit(obj: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyExprRef> {
        let val = py_obj_to_value(&obj, vm)?;
        let scalar_val = val
            .try_to_scalar_value(&val.data_type())
            .map_err(|e| vm.new_runtime_error(format!("{e}")))?;
        let expr: PyExpr = DfExpr::Literal(scalar_val).into();
        Ok(expr.into_ref(&vm.ctx))
    }

    // the main binding code, due to proc macro things, can't directly use a simpler macro
    // because pyfunction is not a attr?
    // ------
    // GrepTime DB's own UDF&UDAF
    // ------

    fn eval_func(name: &str, v: &[PyVectorRef], vm: &VirtualMachine) -> PyResult<PyVector> {
        let v: Vec<VectorRef> = v.iter().map(|v| v.as_vector_ref()).collect();
        let func: Option<FunctionRef> = FUNCTION_REGISTRY.get_function(name);
        let res = match func {
            Some(f) => f.eval(Default::default(), &v),
            None => return Err(vm.new_type_error(format!("Can't find function {name}"))),
        };
        match res {
            Ok(v) => Ok(v.into()),
            Err(err) => Err(vm.new_runtime_error(format!("Fail to evaluate the function,: {err}"))),
        }
    }

    fn eval_aggr_func(
        name: &str,
        args: &[PyVectorRef],
        vm: &VirtualMachine,
    ) -> PyResult<PyObjectRef> {
        let v: Vec<VectorRef> = args.iter().map(|v| v.as_vector_ref()).collect();
        let func = FUNCTION_REGISTRY.get_aggr_function(name);
        let f = match func {
            Some(f) => f.create().creator(),
            None => return Err(vm.new_type_error(format!("Can't find function {name}"))),
        };
        let types: Vec<_> = v.iter().map(|v| v.data_type()).collect();
        let acc = f(&types);
        let mut acc = match acc {
            Ok(acc) => acc,
            Err(err) => {
                return Err(vm.new_runtime_error(format!("Failed to create accumulator: {err}")))
            }
        };
        match acc.update_batch(&v) {
            Ok(_) => (),
            Err(err) => return Err(vm.new_runtime_error(format!("Failed to update batch: {err}"))),
        };
        let res = match acc.evaluate() {
            Ok(r) => r,
            Err(err) => {
                return Err(vm.new_runtime_error(format!("Failed to evaluate accumulator: {err}")))
            }
        };
        let res = val_to_pyobj(res, vm)?;
        Ok(res)
    }

    /// GrepTime's own impl of pow function
    #[pyfunction]
    fn pow_gp(v0: PyVectorRef, v1: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyVector> {
        eval_func("pow", &[v0, v1], vm)
    }

    #[pyfunction]
    fn clip(
        v0: PyVectorRef,
        v1: PyVectorRef,
        v2: PyVectorRef,
        vm: &VirtualMachine,
    ) -> PyResult<PyVector> {
        eval_func("clip", &[v0, v1, v2], vm)
    }

    #[pyfunction]
    fn diff(v: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        eval_aggr_func("diff", &[v], vm)
    }

    #[pyfunction]
    fn mean(v: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        eval_aggr_func("mean", &[v], vm)
    }

    #[pyfunction]
    fn polyval(v0: PyVectorRef, v1: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        eval_aggr_func("polyval", &[v0, v1], vm)
    }

    #[pyfunction]
    fn argmax(v0: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        eval_aggr_func("argmax", &[v0], vm)
    }

    #[pyfunction]
    fn argmin(v0: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        eval_aggr_func("argmin", &[v0], vm)
    }

    #[pyfunction]
    fn percentile(v0: PyVectorRef, v1: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        eval_aggr_func("percentile", &[v0, v1], vm)
    }

    #[pyfunction]
    fn scipy_stats_norm_cdf(
        v0: PyVectorRef,
        v1: PyVectorRef,
        vm: &VirtualMachine,
    ) -> PyResult<PyObjectRef> {
        eval_aggr_func("scipystatsnormcdf", &[v0, v1], vm)
    }

    #[pyfunction]
    fn scipy_stats_norm_pdf(
        v0: PyVectorRef,
        v1: PyVectorRef,
        vm: &VirtualMachine,
    ) -> PyResult<PyObjectRef> {
        eval_aggr_func("scipystatsnormpdf", &[v0, v1], vm)
    }

    // The math function return a general PyObjectRef
    // so it can return both PyVector or a scalar PyInt/Float/Bool

    // ------
    // DataFusion's UDF&UDAF
    // ------
    /// simple math function, the backing implement is datafusion's `sqrt` math function
    #[pyfunction]
    fn sqrt(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(sqrt, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `sin` math function
    #[pyfunction]
    fn sin(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(sin, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `cos` math function
    #[pyfunction]
    fn cos(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(cos, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `tan` math function
    #[pyfunction]
    fn tan(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(tan, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `asin` math function
    #[pyfunction]
    fn asin(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(asin, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `acos` math function
    #[pyfunction]
    fn acos(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(acos, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `atan` math function
    #[pyfunction]
    fn atan(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(atan, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `floor` math function
    #[pyfunction]
    fn floor(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(floor, vm, val);
    }
    /// simple math function, the backing implement is datafusion's `ceil` math function
    #[pyfunction]
    fn ceil(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(ceil, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `round` math function
    #[pyfunction]
    fn round(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        let value = try_into_columnar_value(val, vm)?;
        let result = datafusion_functions::math::round()
            .invoke(&[value])
            .and_then(|x| x.into_array(1))
            .map_err(|e| from_df_err(e, vm))?;
        try_into_py_obj(DFColValue::Array(result), vm)
    }

    //
    // /// simple math function, the backing implement is datafusion's `trunc` math function
    // #[pyfunction]
    // fn trunc(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
    //     bind_call_unary_math_function!(trunc, vm, val);
    // }

    /// simple math function, the backing implement is datafusion's `abs` math function
    #[pyfunction]
    fn abs(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(abs, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `signum` math function
    #[pyfunction]
    fn signum(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(signum, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `exp` math function
    #[pyfunction]
    fn exp(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(exp, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `ln` math function
    #[pyfunction(name = "log")]
    #[pyfunction]
    fn ln(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(ln, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `log2` math function
    #[pyfunction]
    fn log2(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(log2, vm, val);
    }

    /// simple math function, the backing implement is datafusion's `log10` math function
    #[pyfunction]
    fn log10(val: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_call_unary_math_function!(log10, vm, val);
    }

    /// return a random vector range from 0 to 1 and length of len
    #[pyfunction]
    fn random(len: usize, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        // This is in a proc macro so using full path to avoid strange things
        // more info at: https://doc.rust-lang.org/reference/procedural-macros.html#procedural-macro-hygiene
        let arg = NullArray::new(len);
        let args = &[DFColValue::Array(std::sync::Arc::new(arg) as _)];
        let res = datafusion_functions::math::random()
            .invoke(args)
            .map_err(|err| from_df_err(err, vm))?;
        let ret = try_into_py_obj(res, vm)?;
        Ok(ret)
    }
    // UDAF(User Defined Aggregate Function) in datafusion

    #[pyfunction]
    fn approx_distinct(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            ApproxDistinct,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    /// Not implement in datafusion
    /// TODO(discord9): use greptime's own impl instead
    /*
        #[pyfunction]
        fn approx_median(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
        ApproxMedian,
        vm,
        &[values.to_arrow_array()],
        values.arrow_data_type(),
        expr0
    );
    }
         */

    #[pyfunction]
    fn approx_percentile_cont(
        values: PyVectorRef,
        percent: f64,
        vm: &VirtualMachine,
    ) -> PyResult<PyObjectRef> {
        let percent =
            expressions::Literal::new(datafusion_common::ScalarValue::Float64(Some(percent)));
        eval_aggr_fn(
            expressions::ApproxPercentileCont::new(
                vec![
                    Arc::new(expressions::Column::new("expr0", 0)) as _,
                    Arc::new(percent) as _,
                ],
                "ApproxPercentileCont",
                values.arrow_data_type(),
            )
            .map_err(|err| from_df_err(err, vm))?,
            &[values.to_arrow_array()],
            vm,
        )
    }

    /// effectively equals to `list(vector)`
    #[pyfunction]
    fn array_agg(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        eval_aggr_fn(
            expressions::ArrayAgg::new(
                Arc::new(expressions::Column::new("expr0", 0)) as _,
                "ArrayAgg",
                values.arrow_data_type(),
                false,
            ),
            &[values.to_arrow_array()],
            vm,
        )
    }

    /// directly port from datafusion's `avg` function
    #[pyfunction]
    fn avg(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Avg,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn correlation(
        arg0: PyVectorRef,
        arg1: PyVectorRef,
        vm: &VirtualMachine,
    ) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Correlation,
            vm,
            &[arg0.to_arrow_array(), arg1.to_arrow_array()],
            arg0.arrow_data_type(),
            expr0,
            expr1
        );
    }

    #[pyfunction]
    fn count(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Count,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn max(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Max,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn min(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Min,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn stddev(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Stddev,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn stddev_pop(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            StddevPop,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn sum(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Sum,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn variance(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            Variance,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    #[pyfunction]
    fn variance_pop(values: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        bind_aggr_fn!(
            VariancePop,
            vm,
            &[values.to_arrow_array()],
            values.arrow_data_type(),
            expr0
        );
    }

    /// Pow function, bind from gp's [`PowFunction`]
    #[pyfunction]
    fn pow(base: PyObjectRef, pow: PyObjectRef, vm: &VirtualMachine) -> PyResult<PyVector> {
        let base = base
            .payload::<PyVector>()
            .ok_or_else(|| type_cast_error(&base.class().name(), "vector", vm))?;
        let len_base = base.as_vector_ref().len();
        let arg_pow = if is_instance::<PyVector>(&pow, vm) {
            let pow = pow
                .payload::<PyVector>()
                .ok_or_else(|| type_cast_error(&pow.class().name(), "vector", vm))?;
            pow.as_vector_ref()
        } else if is_instance::<PyFloat>(&pow, vm) {
            let pow = pow.try_into_value::<f64>(vm)?;
            let ret =
                ConstantVector::new(Arc::new(Float64Vector::from_vec(vec![pow])) as _, len_base);
            Arc::new(ret) as _
        } else if is_instance::<PyInt>(&pow, vm) {
            let pow = pow.try_into_value::<i64>(vm)?;
            let ret =
                ConstantVector::new(Arc::new(Int64Vector::from_vec(vec![pow])) as _, len_base);
            Arc::new(ret) as _
        } else {
            return Err(vm.new_type_error(format!("Unsupported type({pow:#?}) for pow()")));
        };
        // pyfunction can return PyResult<...>, args can be like PyObjectRef or anything
        // impl IntoPyNativeFunc, see rustpython-vm function for more details
        let args = vec![base.as_vector_ref(), arg_pow];
        let res = PowFunction
            .eval(FunctionContext::default(), &args)
            .map_err(|err| {
                vm.new_runtime_error(format!(
                    "Fail to eval pow() withi given args: {args:?}, Error: {err}"
                ))
            })?;
        Ok(res.into())
    }

    fn gen_none_array(
        data_type: ArrowDataType,
        len: usize,
        vm: &VirtualMachine,
    ) -> PyResult<ArrayRef> {
        macro_rules! match_none_array {
            ($VAR:ident, $LEN: ident, [$($TY:ident),*]) => {
                paste!{
                    match $VAR{
                        $(ArrowDataType::$TY => Arc::new(arrow::array::[<$TY Array>]::from(vec![None;$LEN])), )*
                        _ => return Err(vm.new_type_error(format!("gen_none_array() does not support {:?}", data_type)))
                    }
                }
            };
        }
        let ret: ArrayRef = match_none_array!(
            data_type,
            len,
            [Boolean, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Float32, Float64] // We don't support float16 right now, it's not common in usage.
        );
        Ok(ret)
    }

    #[pyfunction]
    fn prev(cur: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyVector> {
        let cur = cur.to_arrow_array();
        if cur.len() == 0 {
            let ret = cur.slice(0, 0);
            let ret = Helper::try_into_vector(ret.clone()).map_err(|e| {
                vm.new_type_error(format!(
                    "Can't cast result into vector, result: {ret:?}, err: {e:?}",
                ))
            })?;
            return Ok(ret.into());
        }
        let cur = cur.slice(0, cur.len() - 1); // except the last one that is
        let fill = gen_none_array(cur.data_type().clone(), 1, vm)?;
        let ret = compute::concat(&[&*fill, &*cur]).map_err(|err| {
            vm.new_runtime_error(format!("Can't concat array[0] with array[0:-1]!{err:#?}"))
        })?;
        let ret = Helper::try_into_vector(ret.clone()).map_err(|e| {
            vm.new_type_error(format!(
                "Can't cast result into vector, result: {ret:?}, err: {e:?}",
            ))
        })?;
        Ok(ret.into())
    }

    #[pyfunction]
    fn next(cur: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyVector> {
        let cur = cur.to_arrow_array();
        if cur.len() == 0 {
            let ret = cur.slice(0, 0);
            let ret = Helper::try_into_vector(ret.clone()).map_err(|e| {
                vm.new_type_error(format!(
                    "Can't cast result into vector, result: {ret:?}, err: {e:?}",
                ))
            })?;
            return Ok(ret.into());
        }
        let cur = cur.slice(1, cur.len() - 1); // except the last one that is
        let fill = gen_none_array(cur.data_type().clone(), 1, vm)?;
        let ret = compute::concat(&[&*cur, &*fill]).map_err(|err| {
            vm.new_runtime_error(format!("Can't concat array[0] with array[0:-1]!{err:#?}"))
        })?;
        let ret = Helper::try_into_vector(ret.clone()).map_err(|e| {
            vm.new_type_error(format!(
                "Can't cast result into vector, result: {ret:?}, err: {e:?}",
            ))
        })?;
        Ok(ret.into())
    }

    /// generate interval time point
    fn gen_inteveral(
        oldest: i64,
        newest: i64,
        duration: i64,
        vm: &VirtualMachine,
    ) -> PyResult<Vec<i64>> {
        if oldest > newest {
            return Err(vm.new_value_error(format!("{oldest} is greater than {newest}")));
        }
        if duration > 0 {
            let ret = (oldest..=newest)
                .step_by(duration as usize)
                .collect::<Vec<_>>();
            Ok(ret)
        } else {
            Err(vm.new_value_error(format!("duration: {duration} is not positive number.")))
        }
    }

    /// `func`: exec on sliding window slice of given `arr`, expect it to always return a PyVector of one element
    /// `ts`: a vector of time stamp, expect to be Monotonous increase
    /// `arr`: actual data vector
    /// `duration`: the size of sliding window, also is the default step of sliding window's per step
    #[pyfunction]
    fn interval(
        ts: PyVectorRef,
        arr: PyVectorRef,
        duration: i64,
        func: PyRef<PyFunction>,
        vm: &VirtualMachine,
    ) -> PyResult<PyVector> {
        // TODO(discord9): change to use PyDict to mimic a table?
        // then: table: PyDict, , lambda t:
        // ts: PyStr, duration: i64
        // TODO: try to return a PyVector if possible, using concat array in arrow's compute module
        // 1. slice them according to duration
        let arrow_error = |err: ArrowError| vm.new_runtime_error(format!("Arrow Error: {err:#?}"));
        let datatype_error =
            |err: datatypes::Error| vm.new_runtime_error(format!("DataType Errors!: {err:#?}"));
        let ts_array_ref: ArrayRef = ts.to_arrow_array();
        let ts = ts_array_ref
            .as_any()
            .downcast_ref::<Int64Array>()
            .ok_or_else(|| {
                vm.new_type_error(format!("ts must be int64, found: {ts_array_ref:?}"))
            })?;
        let slices = {
            let oldest = aggregate::min(ts)
                .ok_or_else(|| vm.new_runtime_error("ts must has min value".to_string()))?;
            let newest = aggregate::max(ts)
                .ok_or_else(|| vm.new_runtime_error("ts must has max value".to_string()))?;
            gen_inteveral(oldest, newest, duration, vm)?
        };

        let windows = {
            slices
                .iter()
                .zip(slices.iter().skip(1))
                .map(|(first, second)| {
                    let first = Int64Array::new_scalar(*first);
                    let second = Int64Array::new_scalar(*second);
                    let left =
                        arrow::compute::kernels::cmp::gt_eq(ts, &first).map_err(arrow_error)?;
                    let right =
                        arrow::compute::kernels::cmp::lt_eq(ts, &second).map_err(arrow_error)?;
                    boolean::and(&left, &right).map_err(arrow_error)
                })
                .map(|mask| match mask {
                    Ok(mask) => {
                        let arrow_arr = arr.to_arrow_array();
                        compute::filter(&arrow_arr, &mask).map_err(arrow_error)
                    }
                    Err(e) => Err(e),
                })
                .collect::<Result<Vec<_>, _>>()?
        };

        let apply_interval_function = |v: PyResult<PyVector>| match v {
            Ok(v) => {
                let args = FuncArgs::new(vec![v.into_pyobject(vm)], KwArgs::default());
                let ret = func.invoke(args, vm);
                match ret{
                        Ok(obj) => match py_obj_to_vec(&obj, vm, 1){
                            Ok(v) => if v.len()==1{
                                Ok(v)
                            }else{
                                Err(vm.new_runtime_error(format!("Expect return's length to be at most one, found to be length of {}.", v.len())))
                            },
                            Err(err) => Err(vm
                                .new_runtime_error(
                                    format!("expect `interval()`'s `func` return a PyVector(`vector`) or int/float/bool, found return to be {obj:?}, error msg: {err}")
                                )
                            )
                        }
                        Err(e) => Err(e),
                    }
            }
            Err(e) => Err(e),
        };

        // 2. apply function on each slice
        let fn_results = windows
            .into_iter()
            .map(|window| {
                Helper::try_into_vector(window)
                    .map(PyVector::from)
                    .map_err(datatype_error)
            })
            .map(apply_interval_function)
            .collect::<Result<Vec<_>, _>>()?;

        // 3. get returned vector and concat them
        let result_arrays: Vec<_> = fn_results
            .iter()
            .map(|vector| vector.to_arrow_array())
            .collect();
        let result_dyn_arrays: Vec<_> = result_arrays.iter().map(|v| v.as_ref()).collect();
        let concat_array = compute::concat(&result_dyn_arrays).map_err(arrow_error)?;
        let vector = Helper::try_into_vector(concat_array).map_err(datatype_error)?;

        // 4. return result vector
        Ok(PyVector::from(vector))
    }

    /// return first element in a `PyVector` in sliced new `PyVector`, if vector's length is zero, return a zero sized slice instead
    #[pyfunction]
    fn first(arr: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyVector> {
        let arr: ArrayRef = arr.to_arrow_array();
        let ret = match arr.len() {
            0 => arr.slice(0, 0),
            _ => arr.slice(0, 1),
        };
        let ret = Helper::try_into_vector(ret.clone()).map_err(|e| {
            vm.new_type_error(format!(
                "Can't cast result into vector, result: {ret:?}, err: {e:?}",
            ))
        })?;
        Ok(ret.into())
    }

    /// return last element in a `PyVector` in sliced new `PyVector`, if vector's length is zero, return a zero sized slice instead
    #[pyfunction]
    fn last(arr: PyVectorRef, vm: &VirtualMachine) -> PyResult<PyVector> {
        let arr: ArrayRef = arr.to_arrow_array();
        let ret = match arr.len() {
            0 => arr.slice(0, 0),
            _ => arr.slice(arr.len() - 1, 1),
        };
        let ret = Helper::try_into_vector(ret.clone()).map_err(|e| {
            vm.new_type_error(format!(
                "Can't cast result into vector, result: {ret:?}, err: {e:?}",
            ))
        })?;
        Ok(ret.into())
    }

    #[pyfunction]
    fn datetime(input: &PyStr, vm: &VirtualMachine) -> PyResult<i64> {
        let mut parsed = Vec::new();
        let mut prev = 0;
        #[derive(Debug)]
        enum State {
            Num(i64),
            Separator(String),
        }
        let mut state = State::Num(Default::default());
        let input = input.as_str();
        for (idx, ch) in input.chars().enumerate() {
            match (ch.is_ascii_digit(), &state) {
                (true, State::Separator(_)) => {
                    let res = &input[prev..idx];
                    let res = State::Separator(res.to_string());
                    parsed.push(res);
                    prev = idx;
                    state = State::Num(Default::default());
                }
                (false, State::Num(_)) => {
                    let res = str::parse(&input[prev..idx]).map_err(|err| {
                        vm.new_runtime_error(format!("Fail to parse num: {err:#?}"))
                    })?;
                    let res = State::Num(res);
                    parsed.push(res);
                    prev = idx;
                    state = State::Separator(Default::default());
                }
                _ => continue,
            };
        }
        let last = match state {
            State::Num(_) => {
                let res = str::parse(&input[prev..])
                    .map_err(|err| vm.new_runtime_error(format!("Fail to parse num: {err:#?}")))?;
                State::Num(res)
            }
            State::Separator(_) => {
                let res = &input[prev..];
                State::Separator(res.to_string())
            }
        };
        parsed.push(last);
        let mut cur_idx = 0;
        let mut tot_time = 0;
        fn factor(unit: &str, vm: &VirtualMachine) -> PyResult<i64> {
            let ret = match unit {
                "d" => 24 * 60 * 60,
                "h" => 60 * 60,
                "m" => 60,
                "s" => 1,
                _ => return Err(vm.new_type_error(format!("Unknown time unit: {unit}"))),
            };
            Ok(ret)
        }
        while cur_idx < parsed.len() {
            match &parsed[cur_idx] {
                State::Num(v) => {
                    if cur_idx + 1 > parsed.len() {
                        return Err(vm.new_runtime_error(
                            "Expect a separator after number, found nothing!".to_string(),
                        ));
                    }
                    let nxt = &parsed[cur_idx + 1];
                    if let State::Separator(sep) = nxt {
                        tot_time += v * factor(sep, vm)?;
                    } else {
                        return Err(vm.new_runtime_error(format!(
                            "Expect a separator after number, found `{nxt:#?}`"
                        )));
                    }
                    cur_idx += 2;
                }
                State::Separator(sep) => {
                    return Err(vm.new_runtime_error(format!("Expect a number, found `{sep}`")))
                }
            }
        }
        Ok(tot_time)
    }
}