script/python/ffi_types/copr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod compile;
pub mod parse;
use std::collections::HashMap;
use std::result::Result as StdResult;
use std::sync::{Arc, Weak};
use common_query::OutputData;
use common_recordbatch::{RecordBatch, RecordBatches};
use datafusion_common::ScalarValue;
use datatypes::arrow::compute;
use datatypes::data_type::{ConcreteDataType, DataType};
use datatypes::prelude::Value;
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::vectors::{Helper, VectorRef};
// use crate::python::builtins::greptime_builtin;
use parse::DecoratorArgs;
#[cfg(feature = "pyo3_backend")]
use pyo3::pyclass as pyo3class;
use query::parser::QueryLanguageParser;
use query::QueryEngine;
use rustpython_compiler_core::CodeObject;
use rustpython_vm as vm;
#[cfg(test)]
use serde::Deserialize;
use session::context::{QueryContextBuilder, QueryContextRef};
use snafu::{OptionExt, ResultExt};
use vm::convert::ToPyObject;
use vm::{pyclass as rspyclass, PyObjectRef, PyPayload, PyResult, VirtualMachine};
use super::py_recordbatch::PyRecordBatch;
use crate::engine::EvalContext;
use crate::python::error::{
ensure, ArrowSnafu, DataFusionSnafu, OtherSnafu, Result, TypeCastSnafu,
};
use crate::python::ffi_types::PyVector;
#[cfg(feature = "pyo3_backend")]
use crate::python::pyo3::pyo3_exec_parsed;
use crate::python::rspython::rspy_exec_parsed;
#[cfg_attr(test, derive(Deserialize))]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AnnotationInfo {
/// if None, use types inferred by PyVector
// TODO(yingwen): We should use our data type. i.e. ConcreteDataType.
pub datatype: Option<ConcreteDataType>,
pub is_nullable: bool,
}
#[cfg_attr(test, derive(Deserialize))]
#[derive(Debug, Default, Clone, Eq, PartialEq)]
pub enum BackendType {
#[default]
RustPython,
// TODO(discord9): intergral test
#[allow(unused)]
CPython,
}
pub type CoprocessorRef = Arc<Coprocessor>;
#[cfg_attr(test, derive(Deserialize))]
#[derive(Debug, Clone)]
pub struct Coprocessor {
pub name: String,
pub deco_args: DecoratorArgs,
/// get from python function args' annotation, first is type, second is is_nullable
pub arg_types: Vec<Option<AnnotationInfo>>,
/// get from python function returns' annotation, first is type, second is is_nullable
pub return_types: Vec<Option<AnnotationInfo>>,
/// kwargs in coprocessor function's signature
pub kwarg: Option<String>,
/// store its corresponding script, also skip serde when in `cfg(test)` to reduce work in compare
#[cfg_attr(test, serde(skip))]
pub script: String,
// We must use option here, because we use `serde` to deserialize coprocessor
// from ron file and `Deserialize` requires Coprocessor implementing `Default` trait,
// but CodeObject doesn't.
#[cfg_attr(test, serde(skip))]
pub code_obj: Option<CodeObject>,
#[cfg_attr(test, serde(skip))]
pub query_engine: Option<QueryEngineWeakRef>,
/// Use which backend to run this script
/// Ideally in test both backend should be tested, so skip this
#[cfg_attr(test, serde(skip))]
pub backend: BackendType,
}
#[derive(Clone)]
pub struct QueryEngineWeakRef(pub Weak<dyn QueryEngine>);
impl From<Weak<dyn QueryEngine>> for QueryEngineWeakRef {
fn from(value: Weak<dyn QueryEngine>) -> Self {
Self(value)
}
}
impl From<&Arc<dyn QueryEngine>> for QueryEngineWeakRef {
fn from(value: &Arc<dyn QueryEngine>) -> Self {
Self(Arc::downgrade(value))
}
}
impl std::fmt::Debug for QueryEngineWeakRef {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("QueryEngineWeakRef")
.field(&self.0.upgrade().map(|f| f.name().to_string()))
.finish()
}
}
impl PartialEq for Coprocessor {
fn eq(&self, other: &Self) -> bool {
self.name == other.name
&& self.deco_args == other.deco_args
&& self.arg_types == other.arg_types
&& self.return_types == other.return_types
&& self.script == other.script
}
}
impl Eq for Coprocessor {}
impl Coprocessor {
/// generate [`Schema`] according to return names, types,
/// if no annotation
/// the datatypes of the actual columns is used directly
pub(crate) fn gen_schema(&self, cols: &[VectorRef]) -> Result<SchemaRef> {
let names = &self.deco_args.ret_names;
let anno = &self.return_types;
ensure!(
cols.len() == names.len() && names.len() == anno.len(),
OtherSnafu {
reason: format!(
"Unmatched length for cols({}), names({}) and annotation({})",
cols.len(),
names.len(),
anno.len()
)
}
);
let column_schemas = names
.iter()
.enumerate()
.map(|(idx, name)| {
let real_ty = cols[idx].data_type();
let AnnotationInfo {
datatype: ty,
is_nullable,
} = anno[idx].clone().unwrap_or_else(|| {
// default to be not nullable and use DataType inferred by PyVector itself
AnnotationInfo {
datatype: Some(real_ty.clone()),
is_nullable: false,
}
});
let column_type = match ty {
Some(anno_type) => anno_type,
// if type is like `_` or `_ | None`
None => real_ty,
};
Ok(ColumnSchema::new(name, column_type, is_nullable))
})
.collect::<Result<Vec<_>>>()?;
Ok(Arc::new(Schema::new(column_schemas)))
}
/// check if real types and annotation types(if have) is the same, if not try cast columns to annotated type
pub(crate) fn check_and_cast_type(&self, cols: &mut [VectorRef]) -> Result<()> {
for col in cols.iter_mut() {
if let ConcreteDataType::List(x) = col.data_type() {
let values =
ScalarValue::convert_array_to_scalar_vec(col.to_arrow_array().as_ref())
.context(DataFusionSnafu)?
.into_iter()
.flatten()
.map(Value::try_from)
.collect::<std::result::Result<Vec<_>, _>>()
.context(TypeCastSnafu)?;
let mut builder = x.item_type().create_mutable_vector(values.len());
for v in values.iter() {
builder.push_value_ref(v.as_value_ref());
}
*col = builder.to_vector();
}
}
let return_types = &self.return_types;
// allow ignore Return Type Annotation
if return_types.is_empty() {
return Ok(());
}
ensure!(
cols.len() == return_types.len(),
OtherSnafu {
reason: format!(
"The number of return Vector is wrong, expect {}, found {}",
return_types.len(),
cols.len()
)
}
);
for (col, anno) in cols.iter_mut().zip(return_types) {
if let Some(AnnotationInfo {
datatype: Some(datatype),
is_nullable: _,
}) = anno
{
let real_ty = col.data_type();
let anno_ty = datatype;
if real_ty != *anno_ty {
let array = col.to_arrow_array();
let array =
compute::cast(&array, &anno_ty.as_arrow_type()).context(ArrowSnafu)?;
*col = Helper::try_into_vector(array).context(TypeCastSnafu)?;
}
}
}
Ok(())
}
}
/// select columns according to `fetch_names` from `rb`
/// and cast them into a Vec of PyVector
pub(crate) fn select_from_rb(rb: &RecordBatch, fetch_names: &[String]) -> Result<Vec<PyVector>> {
fetch_names
.iter()
.map(|name| {
let vector = rb.column_by_name(name).with_context(|| OtherSnafu {
reason: format!("Can't find field name {name} in all columns in {rb:?}"),
})?;
Ok(PyVector::from(vector.clone()))
})
.collect()
}
/// match between arguments' real type and annotation types
/// if type anno is `vector[_]` then use real type(from RecordBatch's schema)
pub(crate) fn check_args_anno_real_type(
arg_names: &[String],
args: &[PyVector],
copr: &Coprocessor,
rb: &RecordBatch,
) -> Result<()> {
ensure!(
arg_names.len() == args.len(),
OtherSnafu {
reason: format!("arg_names:{arg_names:?} and args{args:?}'s length is different")
}
);
for (idx, arg) in args.iter().enumerate() {
let anno_ty = copr.arg_types[idx].clone();
let real_ty = arg.data_type();
let arg_name = arg_names[idx].clone();
let col_idx = rb.schema.column_index_by_name(&arg_name).ok_or_else(|| {
OtherSnafu {
reason: format!("Can't find column by name {arg_name}"),
}
.build()
})?;
let is_nullable: bool = rb.schema.column_schemas()[col_idx].is_nullable();
ensure!(
anno_ty
.clone()
.map(|v| v.datatype.is_none() // like a vector[_]
|| v.datatype == Some(real_ty.clone()) && v.is_nullable == is_nullable)
.unwrap_or(true),
OtherSnafu {
reason: format!(
"column {}'s Type annotation is {:?}, but actual type is {:?} with nullable=={}",
// It's safe to unwrap here, we already ensure the args and types number is the same when parsing
copr.deco_args.arg_names.as_ref().unwrap()[idx],
anno_ty,
real_ty,
is_nullable
)
}
)
}
Ok(())
}
/// The coprocessor function accept a python script and a Record Batch:
/// ## What it does
/// 1. it take a python script and a [`RecordBatch`], extract columns and annotation info according to `args` given in decorator in python script
/// 2. execute python code and return a vector or a tuple of vector,
/// 3. the returning vector(s) is assembled into a new [`RecordBatch`] according to `returns` in python decorator and return to caller
///
/// # Example
///
/// ```ignore
/// use std::sync::Arc;
/// use common_recordbatch::RecordBatch;
/// use datatypes::prelude::*;
/// use datatypes::schema::{ColumnSchema, Schema};
/// use datatypes::vectors::{Float32Vector, Float64Vector};
/// use common_function::scalars::python::exec_coprocessor;
/// let python_source = r#"
/// @copr(args=["cpu", "mem"], returns=["perf", "what"])
/// def a(cpu, mem):
/// return cpu + mem, cpu - mem
/// "#;
/// let cpu_array = Float32Vector::from_slice([0.9f32, 0.8, 0.7, 0.6]);
/// let mem_array = Float64Vector::from_slice([0.1f64, 0.2, 0.3, 0.4]);
/// let schema = Arc::new(Schema::new(vec![
/// ColumnSchema::new("cpu", ConcreteDataType::float32_datatype(), false),
/// ColumnSchema::new("mem", ConcreteDataType::float64_datatype(), false),
/// ]));
/// let rb =
/// RecordBatch::new(schema, vec![Arc::new(cpu_array), Arc::new(mem_array)]).unwrap();
/// let ret = exec_coprocessor(python_source, &rb).unwrap();
/// assert_eq!(ret.column(0).len(), 4);
/// ```
///
/// # Type Annotation
/// you can use type annotations in args and returns to designate types, so coprocessor will check for corresponding types.
///
/// Currently support types are `u8`, `u16`, `u32`, `u64`, `i8`, `i16`, `i32`, `i64` and `f16`, `f32`, `f64`
///
/// use `f64 | None` to mark if returning column is nullable like in [`RecordBatch`]'s schema's [`ColumnSchema`]'s is_nullable
///
/// you can also use single underscore `_` to let coprocessor infer what type it is, so `_` and `_ | None` are both valid in type annotation.
/// Note: using `_` means not nullable column, using `_ | None` means nullable column
///
/// a example (of python script) given below:
/// ```python
/// @copr(args=["cpu", "mem"], returns=["perf", "minus", "mul", "div"])
/// def a(cpu: vector[f32], mem: vector[f64])->(vector[f64|None], vector[f64], vector[_], vector[_ | None]):
/// return cpu + mem, cpu - mem, cpu * mem, cpu / mem
/// ```
///
/// # Return Constant columns
/// You can return constant in python code like `return 1, 1.0, True`
/// which create a constant array(with same value)(currently support int, float and bool) as column on return
#[cfg(test)]
pub fn exec_coprocessor(
script: &str,
rb: &Option<RecordBatch>,
eval_ctx: &EvalContext,
) -> Result<RecordBatch> {
// 1. parse the script and check if it's only a function with `@coprocessor` decorator, and get `args` and `returns`,
// 2. also check for exist of `args` in `rb`, if not found, return error
// cache the result of parse_copr
let copr = parse::parse_and_compile_copr(script, None)?;
exec_parsed(&copr, rb, &HashMap::new(), eval_ctx)
}
#[cfg_attr(feature = "pyo3_backend", pyo3class(name = "query_engine"))]
#[rspyclass(module = false, name = "query_engine")]
#[derive(Debug, PyPayload, Clone)]
pub struct PyQueryEngine {
inner: QueryEngineWeakRef,
query_ctx: QueryContextRef,
}
pub(crate) enum Either {
Rb(RecordBatches),
AffectedRows(usize),
}
impl PyQueryEngine {
pub(crate) fn sql_to_rb(&self, sql: String) -> StdResult<RecordBatch, String> {
let res = self.query_with_new_thread(sql.clone())?;
match res {
Either::Rb(rbs) => {
let rb = compute::concat_batches(
rbs.schema().arrow_schema(),
rbs.iter().map(|r| r.df_record_batch()),
)
.map_err(|e| format!("Concat batches failed for query {sql}: {e}"))?;
RecordBatch::try_from_df_record_batch(rbs.schema(), rb)
.map_err(|e| format!("Convert datafusion record batch to record batch failed for query {sql}: {e}"))
}
Either::AffectedRows(_) => Err(format!("Expect actual results from query {sql}")),
}
}
}
#[rspyclass]
impl PyQueryEngine {
pub(crate) fn from_weakref(inner: QueryEngineWeakRef, query_ctx: QueryContextRef) -> Self {
Self { inner, query_ctx }
}
pub(crate) fn query_with_new_thread(&self, s: String) -> StdResult<Either, String> {
let query = self.inner.0.upgrade();
let query_ctx = self.query_ctx.clone();
let thread_handle = std::thread::spawn(move || -> std::result::Result<_, String> {
if let Some(engine) = query {
let stmt =
QueryLanguageParser::parse_sql(&s, &query_ctx).map_err(|e| e.to_string())?;
// To prevent the error of nested creating Runtime, if is nested, use the parent runtime instead
let rt = tokio::runtime::Runtime::new().map_err(|e| e.to_string())?;
let handle = rt.handle().clone();
let res = handle.block_on(async {
let ctx = Arc::new(QueryContextBuilder::default().build());
let plan = engine
.planner()
.plan(&stmt, ctx.clone())
.await
.map_err(|e| e.to_string())?;
let res = engine
.clone()
.execute(plan, ctx)
.await
.map_err(|e| e.to_string());
match res {
Ok(o) => match o.data {
OutputData::AffectedRows(cnt) => Ok(Either::AffectedRows(cnt)),
OutputData::RecordBatches(rbs) => Ok(Either::Rb(rbs)),
OutputData::Stream(s) => Ok(Either::Rb(
common_recordbatch::util::collect_batches(s).await.unwrap(),
)),
},
Err(e) => Err(e),
}
})?;
Ok(res)
} else {
Err("Query Engine is already dropped".to_string())
}
});
thread_handle
.join()
.map_err(|e| format!("Dedicated thread for sql query panic: {e:?}"))?
}
// TODO(discord9): find a better way to call sql query api, now we don't if we are in async context or not
/// - return sql query results in `PyRecordBatch`, or
/// - a empty `PyDict` if query results is empty
/// - or number of AffectedRows
#[pymethod]
fn sql(&self, s: String, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
self.query_with_new_thread(s)
.map_err(|e| vm.new_system_error(e))
.map(|rbs| match rbs {
Either::Rb(rbs) => {
let rb = compute::concat_batches(
rbs.schema().arrow_schema(),
rbs.iter().map(|rb| rb.df_record_batch()),
)
.map_err(|e| {
vm.new_runtime_error(format!("Failed to concat batches: {e:#?}"))
})?;
let rb =
RecordBatch::try_from_df_record_batch(rbs.schema(), rb).map_err(|e| {
vm.new_runtime_error(format!("Failed to cast recordbatch: {e:#?}"))
})?;
let rb = PyRecordBatch::new(rb);
Ok(rb.to_pyobject(vm))
}
Either::AffectedRows(cnt) => Ok(vm.ctx.new_int(cnt).to_pyobject(vm)),
})?
}
}
/// using a parsed `Coprocessor` struct as input to execute python code
pub fn exec_parsed(
copr: &Coprocessor,
rb: &Option<RecordBatch>,
params: &HashMap<String, String>,
eval_ctx: &EvalContext,
) -> Result<RecordBatch> {
match copr.backend {
BackendType::RustPython => rspy_exec_parsed(copr, rb, params, eval_ctx),
BackendType::CPython => {
#[cfg(feature = "pyo3_backend")]
{
pyo3_exec_parsed(copr, rb, params, eval_ctx)
}
#[cfg(not(feature = "pyo3_backend"))]
{
OtherSnafu {
reason: "`pyo3` feature is disabled, therefore can't run scripts in cpython"
.to_string(),
}
.fail()
}
}
}
}
/// execute script just like [`exec_coprocessor`] do,
/// but instead of return a internal [`Error`] type,
/// return a friendly String format of error
///
/// use `ln_offset` and `filename` to offset line number and mark file name in error prompt
#[cfg(test)]
#[allow(dead_code)]
pub fn exec_copr_print(
script: &str,
rb: &Option<RecordBatch>,
ln_offset: usize,
filename: &str,
eval_ctx: &EvalContext,
) -> StdResult<RecordBatch, String> {
let res = exec_coprocessor(script, rb, eval_ctx);
res.map_err(|e| {
crate::python::error::pretty_print_error_in_src(script, &e, ln_offset, filename)
})
}
#[cfg(test)]
mod tests {
use crate::python::ffi_types::copr::parse::parse_and_compile_copr;
#[test]
fn test_parse_copr() {
let script = r#"
def add(a, b):
return a + b
@copr(args=["a", "b", "c"], returns = ["r"], sql="select number as a,number as b,number as c from numbers limit 100")
def test(a, b, c, **params):
import greptime as g
return ( a + b ) / g.sqrt(c)
"#;
let copr = parse_and_compile_copr(script, None).unwrap();
assert_eq!(copr.name, "test");
let deco_args = copr.deco_args.clone();
assert_eq!(
deco_args.sql.unwrap(),
"select number as a,number as b,number as c from numbers limit 100"
);
assert_eq!(deco_args.ret_names, vec!["r"]);
assert_eq!(deco_args.arg_names.unwrap(), vec!["a", "b", "c"]);
assert_eq!(copr.arg_types, vec![None, None, None]);
assert_eq!(copr.return_types, vec![None]);
assert_eq!(copr.kwarg, Some("params".to_string()));
assert_eq!(copr.script, script);
let _ = copr.code_obj.unwrap();
}
}