script/python/ffi_types/
copr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

pub mod compile;
pub mod parse;

use std::collections::HashMap;
use std::result::Result as StdResult;
use std::sync::{Arc, Weak};

use common_query::OutputData;
use common_recordbatch::{RecordBatch, RecordBatches};
use datafusion_common::ScalarValue;
use datatypes::arrow::compute;
use datatypes::data_type::{ConcreteDataType, DataType};
use datatypes::prelude::Value;
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::vectors::{Helper, VectorRef};
// use crate::python::builtins::greptime_builtin;
use parse::DecoratorArgs;
#[cfg(feature = "pyo3_backend")]
use pyo3::pyclass as pyo3class;
use query::parser::QueryLanguageParser;
use query::QueryEngine;
use rustpython_compiler_core::CodeObject;
use rustpython_vm as vm;
#[cfg(test)]
use serde::Deserialize;
use session::context::{QueryContextBuilder, QueryContextRef};
use snafu::{OptionExt, ResultExt};
use vm::convert::ToPyObject;
use vm::{pyclass as rspyclass, PyObjectRef, PyPayload, PyResult, VirtualMachine};

use super::py_recordbatch::PyRecordBatch;
use crate::engine::EvalContext;
use crate::python::error::{
    ensure, ArrowSnafu, DataFusionSnafu, OtherSnafu, Result, TypeCastSnafu,
};
use crate::python::ffi_types::PyVector;
#[cfg(feature = "pyo3_backend")]
use crate::python::pyo3::pyo3_exec_parsed;
use crate::python::rspython::rspy_exec_parsed;

#[cfg_attr(test, derive(Deserialize))]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AnnotationInfo {
    /// if None, use types inferred by PyVector
    // TODO(yingwen): We should use our data type. i.e. ConcreteDataType.
    pub datatype: Option<ConcreteDataType>,
    pub is_nullable: bool,
}

#[cfg_attr(test, derive(Deserialize))]
#[derive(Debug, Default, Clone, Eq, PartialEq)]
pub enum BackendType {
    #[default]
    RustPython,
    // TODO(discord9): intergral test
    #[allow(unused)]
    CPython,
}

pub type CoprocessorRef = Arc<Coprocessor>;

#[cfg_attr(test, derive(Deserialize))]
#[derive(Debug, Clone)]
pub struct Coprocessor {
    pub name: String,
    pub deco_args: DecoratorArgs,
    /// get from python function args' annotation, first is type, second is is_nullable
    pub arg_types: Vec<Option<AnnotationInfo>>,
    /// get from python function returns' annotation, first is type, second is is_nullable
    pub return_types: Vec<Option<AnnotationInfo>>,
    /// kwargs in coprocessor function's signature
    pub kwarg: Option<String>,
    /// store its corresponding script, also skip serde when in `cfg(test)` to reduce work in compare
    #[cfg_attr(test, serde(skip))]
    pub script: String,
    // We must use option here, because we use `serde` to deserialize coprocessor
    // from ron file and `Deserialize` requires Coprocessor implementing `Default` trait,
    // but CodeObject doesn't.
    #[cfg_attr(test, serde(skip))]
    pub code_obj: Option<CodeObject>,
    #[cfg_attr(test, serde(skip))]
    pub query_engine: Option<QueryEngineWeakRef>,
    /// Use which backend to run this script
    /// Ideally in test both backend should be tested, so skip this
    #[cfg_attr(test, serde(skip))]
    pub backend: BackendType,
}

#[derive(Clone)]
pub struct QueryEngineWeakRef(pub Weak<dyn QueryEngine>);

impl From<Weak<dyn QueryEngine>> for QueryEngineWeakRef {
    fn from(value: Weak<dyn QueryEngine>) -> Self {
        Self(value)
    }
}

impl From<&Arc<dyn QueryEngine>> for QueryEngineWeakRef {
    fn from(value: &Arc<dyn QueryEngine>) -> Self {
        Self(Arc::downgrade(value))
    }
}

impl std::fmt::Debug for QueryEngineWeakRef {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_tuple("QueryEngineWeakRef")
            .field(&self.0.upgrade().map(|f| f.name().to_string()))
            .finish()
    }
}

impl PartialEq for Coprocessor {
    fn eq(&self, other: &Self) -> bool {
        self.name == other.name
            && self.deco_args == other.deco_args
            && self.arg_types == other.arg_types
            && self.return_types == other.return_types
            && self.script == other.script
    }
}

impl Eq for Coprocessor {}

impl Coprocessor {
    /// generate [`Schema`] according to return names, types,
    /// if no annotation
    /// the datatypes of the actual columns is used directly
    pub(crate) fn gen_schema(&self, cols: &[VectorRef]) -> Result<SchemaRef> {
        let names = &self.deco_args.ret_names;
        let anno = &self.return_types;
        ensure!(
            cols.len() == names.len() && names.len() == anno.len(),
            OtherSnafu {
                reason: format!(
                    "Unmatched length for cols({}), names({}) and annotation({})",
                    cols.len(),
                    names.len(),
                    anno.len()
                )
            }
        );

        let column_schemas = names
            .iter()
            .enumerate()
            .map(|(idx, name)| {
                let real_ty = cols[idx].data_type();
                let AnnotationInfo {
                    datatype: ty,
                    is_nullable,
                } = anno[idx].clone().unwrap_or_else(|| {
                    // default to be not nullable and use DataType inferred by PyVector itself
                    AnnotationInfo {
                        datatype: Some(real_ty.clone()),
                        is_nullable: false,
                    }
                });
                let column_type = match ty {
                    Some(anno_type) => anno_type,
                    // if type is like `_` or `_ | None`
                    None => real_ty,
                };
                Ok(ColumnSchema::new(name, column_type, is_nullable))
            })
            .collect::<Result<Vec<_>>>()?;

        Ok(Arc::new(Schema::new(column_schemas)))
    }

    /// check if real types and annotation types(if have) is the same, if not try cast columns to annotated type
    pub(crate) fn check_and_cast_type(&self, cols: &mut [VectorRef]) -> Result<()> {
        for col in cols.iter_mut() {
            if let ConcreteDataType::List(x) = col.data_type() {
                let values =
                    ScalarValue::convert_array_to_scalar_vec(col.to_arrow_array().as_ref())
                        .context(DataFusionSnafu)?
                        .into_iter()
                        .flatten()
                        .map(Value::try_from)
                        .collect::<std::result::Result<Vec<_>, _>>()
                        .context(TypeCastSnafu)?;

                let mut builder = x.item_type().create_mutable_vector(values.len());
                for v in values.iter() {
                    builder.push_value_ref(v.as_value_ref());
                }
                *col = builder.to_vector();
            }
        }

        let return_types = &self.return_types;
        // allow ignore Return Type Annotation
        if return_types.is_empty() {
            return Ok(());
        }
        ensure!(
            cols.len() == return_types.len(),
            OtherSnafu {
                reason: format!(
                    "The number of return Vector is wrong, expect {}, found {}",
                    return_types.len(),
                    cols.len()
                )
            }
        );
        for (col, anno) in cols.iter_mut().zip(return_types) {
            if let Some(AnnotationInfo {
                datatype: Some(datatype),
                is_nullable: _,
            }) = anno
            {
                let real_ty = col.data_type();
                let anno_ty = datatype;
                if real_ty != *anno_ty {
                    let array = col.to_arrow_array();
                    let array =
                        compute::cast(&array, &anno_ty.as_arrow_type()).context(ArrowSnafu)?;
                    *col = Helper::try_into_vector(array).context(TypeCastSnafu)?;
                }
            }
        }
        Ok(())
    }
}

/// select columns according to `fetch_names` from `rb`
/// and cast them into a Vec of PyVector
pub(crate) fn select_from_rb(rb: &RecordBatch, fetch_names: &[String]) -> Result<Vec<PyVector>> {
    fetch_names
        .iter()
        .map(|name| {
            let vector = rb.column_by_name(name).with_context(|| OtherSnafu {
                reason: format!("Can't find field name {name} in all columns in {rb:?}"),
            })?;
            Ok(PyVector::from(vector.clone()))
        })
        .collect()
}

/// match between arguments' real type and annotation types
/// if type anno is `vector[_]` then use real type(from RecordBatch's schema)
pub(crate) fn check_args_anno_real_type(
    arg_names: &[String],
    args: &[PyVector],
    copr: &Coprocessor,
    rb: &RecordBatch,
) -> Result<()> {
    ensure!(
        arg_names.len() == args.len(),
        OtherSnafu {
            reason: format!("arg_names:{arg_names:?} and args{args:?}'s length is different")
        }
    );
    for (idx, arg) in args.iter().enumerate() {
        let anno_ty = copr.arg_types[idx].clone();
        let real_ty = arg.data_type();
        let arg_name = arg_names[idx].clone();
        let col_idx = rb.schema.column_index_by_name(&arg_name).ok_or_else(|| {
            OtherSnafu {
                reason: format!("Can't find column by name {arg_name}"),
            }
            .build()
        })?;
        let is_nullable: bool = rb.schema.column_schemas()[col_idx].is_nullable();
        ensure!(
            anno_ty
                .clone()
                .map(|v| v.datatype.is_none() // like a vector[_]
                     || v.datatype == Some(real_ty.clone()) && v.is_nullable == is_nullable)
                .unwrap_or(true),
            OtherSnafu {
                reason: format!(
                    "column {}'s Type annotation is {:?}, but actual type is {:?} with nullable=={}",
                    // It's safe to unwrap here, we already ensure the args and types number is the same when parsing
                    copr.deco_args.arg_names.as_ref().unwrap()[idx],
                    anno_ty,
                    real_ty,
                    is_nullable
                )
            }
        )
    }
    Ok(())
}

/// The coprocessor function accept a python script and a Record Batch:
/// ## What it does
/// 1. it take a python script and a [`RecordBatch`], extract columns and annotation info according to `args` given in decorator in python script
/// 2. execute python code and return a vector or a tuple of vector,
/// 3. the returning vector(s) is assembled into a new [`RecordBatch`] according to `returns` in python decorator and return to caller
///
/// # Example
///
/// ```ignore
/// use std::sync::Arc;
/// use common_recordbatch::RecordBatch;
/// use datatypes::prelude::*;
/// use datatypes::schema::{ColumnSchema, Schema};
/// use datatypes::vectors::{Float32Vector, Float64Vector};
/// use common_function::scalars::python::exec_coprocessor;
/// let python_source = r#"
/// @copr(args=["cpu", "mem"], returns=["perf", "what"])
/// def a(cpu, mem):
///     return cpu + mem, cpu - mem
/// "#;
/// let cpu_array = Float32Vector::from_slice([0.9f32, 0.8, 0.7, 0.6]);
/// let mem_array = Float64Vector::from_slice([0.1f64, 0.2, 0.3, 0.4]);
/// let schema = Arc::new(Schema::new(vec![
///  ColumnSchema::new("cpu", ConcreteDataType::float32_datatype(), false),
///  ColumnSchema::new("mem", ConcreteDataType::float64_datatype(), false),
/// ]));
/// let rb =
/// RecordBatch::new(schema, vec![Arc::new(cpu_array), Arc::new(mem_array)]).unwrap();
/// let ret = exec_coprocessor(python_source, &rb).unwrap();
/// assert_eq!(ret.column(0).len(), 4);
/// ```
///
/// # Type Annotation
/// you can use type annotations in args and returns to designate types, so coprocessor will check for corresponding types.
///
/// Currently support types are `u8`, `u16`, `u32`, `u64`, `i8`, `i16`, `i32`, `i64` and `f16`, `f32`, `f64`
///
/// use `f64 | None` to mark if returning column is nullable like in [`RecordBatch`]'s schema's [`ColumnSchema`]'s is_nullable
///
/// you can also use single underscore `_` to let coprocessor infer what type it is, so `_` and `_ | None` are both valid in type annotation.
/// Note: using `_` means not nullable column, using `_ | None` means nullable column
///
/// a example (of python script) given below:
/// ```python
/// @copr(args=["cpu", "mem"], returns=["perf", "minus", "mul", "div"])
/// def a(cpu: vector[f32], mem: vector[f64])->(vector[f64|None], vector[f64], vector[_], vector[_ | None]):
///     return cpu + mem, cpu - mem, cpu * mem, cpu / mem
/// ```
///
/// # Return Constant columns
/// You can return constant in python code like `return 1, 1.0, True`
/// which create a constant array(with same value)(currently support int, float and bool) as column on return
#[cfg(test)]
pub fn exec_coprocessor(
    script: &str,
    rb: &Option<RecordBatch>,
    eval_ctx: &EvalContext,
) -> Result<RecordBatch> {
    // 1. parse the script and check if it's only a function with `@coprocessor` decorator, and get `args` and `returns`,
    // 2. also check for exist of `args` in `rb`, if not found, return error
    // cache the result of parse_copr
    let copr = parse::parse_and_compile_copr(script, None)?;
    exec_parsed(&copr, rb, &HashMap::new(), eval_ctx)
}

#[cfg_attr(feature = "pyo3_backend", pyo3class(name = "query_engine"))]
#[rspyclass(module = false, name = "query_engine")]
#[derive(Debug, PyPayload, Clone)]
pub struct PyQueryEngine {
    inner: QueryEngineWeakRef,
    query_ctx: QueryContextRef,
}
pub(crate) enum Either {
    Rb(RecordBatches),
    AffectedRows(usize),
}

impl PyQueryEngine {
    pub(crate) fn sql_to_rb(&self, sql: String) -> StdResult<RecordBatch, String> {
        let res = self.query_with_new_thread(sql.clone())?;
        match res {
            Either::Rb(rbs) => {
                let rb = compute::concat_batches(
                    rbs.schema().arrow_schema(),
                    rbs.iter().map(|r| r.df_record_batch()),
                )
                .map_err(|e| format!("Concat batches failed for query {sql}: {e}"))?;

                RecordBatch::try_from_df_record_batch(rbs.schema(), rb)
                    .map_err(|e| format!("Convert datafusion record batch to record batch failed for query {sql}: {e}"))
            }
            Either::AffectedRows(_) => Err(format!("Expect actual results from query {sql}")),
        }
    }
}

#[rspyclass]
impl PyQueryEngine {
    pub(crate) fn from_weakref(inner: QueryEngineWeakRef, query_ctx: QueryContextRef) -> Self {
        Self { inner, query_ctx }
    }
    pub(crate) fn query_with_new_thread(&self, s: String) -> StdResult<Either, String> {
        let query = self.inner.0.upgrade();
        let query_ctx = self.query_ctx.clone();
        let thread_handle = std::thread::spawn(move || -> std::result::Result<_, String> {
            if let Some(engine) = query {
                let stmt =
                    QueryLanguageParser::parse_sql(&s, &query_ctx).map_err(|e| e.to_string())?;

                // To prevent the error of nested creating Runtime, if is nested, use the parent runtime instead

                let rt = tokio::runtime::Runtime::new().map_err(|e| e.to_string())?;
                let handle = rt.handle().clone();
                let res = handle.block_on(async {
                    let ctx = Arc::new(QueryContextBuilder::default().build());
                    let plan = engine
                        .planner()
                        .plan(&stmt, ctx.clone())
                        .await
                        .map_err(|e| e.to_string())?;
                    let res = engine
                        .clone()
                        .execute(plan, ctx)
                        .await
                        .map_err(|e| e.to_string());
                    match res {
                        Ok(o) => match o.data {
                            OutputData::AffectedRows(cnt) => Ok(Either::AffectedRows(cnt)),
                            OutputData::RecordBatches(rbs) => Ok(Either::Rb(rbs)),
                            OutputData::Stream(s) => Ok(Either::Rb(
                                common_recordbatch::util::collect_batches(s).await.unwrap(),
                            )),
                        },

                        Err(e) => Err(e),
                    }
                })?;
                Ok(res)
            } else {
                Err("Query Engine is already dropped".to_string())
            }
        });
        thread_handle
            .join()
            .map_err(|e| format!("Dedicated thread for sql query panic: {e:?}"))?
    }
    // TODO(discord9): find a better way to call sql query api, now we don't if we are in async context or not
    /// - return sql query results in `PyRecordBatch`,  or
    /// - a empty `PyDict` if query results is empty
    /// - or number of AffectedRows
    #[pymethod]
    fn sql(&self, s: String, vm: &VirtualMachine) -> PyResult<PyObjectRef> {
        self.query_with_new_thread(s)
            .map_err(|e| vm.new_system_error(e))
            .map(|rbs| match rbs {
                Either::Rb(rbs) => {
                    let rb = compute::concat_batches(
                        rbs.schema().arrow_schema(),
                        rbs.iter().map(|rb| rb.df_record_batch()),
                    )
                    .map_err(|e| {
                        vm.new_runtime_error(format!("Failed to concat batches: {e:#?}"))
                    })?;
                    let rb =
                        RecordBatch::try_from_df_record_batch(rbs.schema(), rb).map_err(|e| {
                            vm.new_runtime_error(format!("Failed to cast recordbatch: {e:#?}"))
                        })?;
                    let rb = PyRecordBatch::new(rb);

                    Ok(rb.to_pyobject(vm))
                }
                Either::AffectedRows(cnt) => Ok(vm.ctx.new_int(cnt).to_pyobject(vm)),
            })?
    }
}

/// using a parsed `Coprocessor` struct as input to execute python code
pub fn exec_parsed(
    copr: &Coprocessor,
    rb: &Option<RecordBatch>,
    params: &HashMap<String, String>,
    eval_ctx: &EvalContext,
) -> Result<RecordBatch> {
    match copr.backend {
        BackendType::RustPython => rspy_exec_parsed(copr, rb, params, eval_ctx),
        BackendType::CPython => {
            #[cfg(feature = "pyo3_backend")]
            {
                pyo3_exec_parsed(copr, rb, params, eval_ctx)
            }
            #[cfg(not(feature = "pyo3_backend"))]
            {
                OtherSnafu {
                    reason: "`pyo3` feature is disabled, therefore can't run scripts in cpython"
                        .to_string(),
                }
                .fail()
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::python::ffi_types::copr::parse::parse_and_compile_copr;

    #[test]
    fn test_parse_copr() {
        let script = r#"
def add(a, b):
    return a + b

@copr(args=["a", "b", "c"], returns = ["r"], sql="select number as a,number as b,number as c from numbers limit 100")
def test(a, b, c, **params):
    import greptime as g
    return ( a + b ) / g.sqrt(c)
"#;

        let copr = parse_and_compile_copr(script, None).unwrap();
        assert_eq!(copr.name, "test");
        let deco_args = copr.deco_args.clone();
        assert_eq!(
            deco_args.sql.unwrap(),
            "select number as a,number as b,number as c from numbers limit 100"
        );
        assert_eq!(deco_args.ret_names, vec!["r"]);
        assert_eq!(deco_args.arg_names.unwrap(), vec!["a", "b", "c"]);
        assert_eq!(copr.arg_types, vec![None, None, None]);
        assert_eq!(copr.return_types, vec![None]);
        assert_eq!(copr.kwarg, Some("params".to_string()));
        assert_eq!(copr.script, script);
        let _ = copr.code_obj.unwrap();
    }
}