script/python/
engine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Python script engine
use std::any::Any;
use std::collections::HashMap;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use async_trait::async_trait;
use common_error::ext::BoxedError;
use common_function::function::Function;
use common_function::function_registry::FUNCTION_REGISTRY;
use common_query::error::{PyUdfSnafu, UdfTempRecordBatchSnafu};
use common_query::prelude::Signature;
use common_query::{Output, OutputData};
use common_recordbatch::adapter::RecordBatchMetrics;
use common_recordbatch::error::{ExternalSnafu, Result as RecordBatchResult};
use common_recordbatch::{
    OrderOption, RecordBatch, RecordBatchStream, RecordBatches, SendableRecordBatchStream,
};
use datafusion_expr::Volatility;
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::vectors::VectorRef;
use futures::Stream;
use query::parser::{QueryLanguageParser, QueryStatement};
use query::QueryEngineRef;
use snafu::{ensure, ResultExt};
use sql::statements::statement::Statement;

use crate::engine::{CompileContext, EvalContext, Script, ScriptEngine};
use crate::python::error::{self, DatabaseQuerySnafu, PyRuntimeSnafu, Result, TokioJoinSnafu};
use crate::python::ffi_types::copr::{exec_parsed, parse, AnnotationInfo, CoprocessorRef};
use crate::python::utils::spawn_blocking_script;
const PY_ENGINE: &str = "python";

#[derive(Debug)]
pub struct PyUDF {
    copr: CoprocessorRef,
}

impl std::fmt::Display for PyUDF {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}({})->",
            &self.copr.name,
            self.copr
                .deco_args
                .arg_names
                .as_ref()
                .unwrap_or(&vec![])
                .join(",")
        )
    }
}

impl PyUDF {
    fn from_copr(copr: CoprocessorRef) -> Arc<Self> {
        Arc::new(Self { copr })
    }

    /// Register to `FUNCTION_REGISTRY`
    fn register_as_udf(zelf: Arc<Self>) {
        FUNCTION_REGISTRY.register(zelf)
    }

    fn register_to_query_engine(zelf: Arc<Self>, engine: QueryEngineRef) {
        engine.register_function(zelf)
    }

    /// Fake a schema, should only be used with dynamically eval a Python Udf
    fn fake_schema(&self, columns: &[VectorRef]) -> SchemaRef {
        // try to give schema right names in args so script can run as UDF without modify
        // because when running as PyUDF, the incoming columns should have matching names to make sense
        // for Coprocessor
        let args = self.copr.deco_args.arg_names.clone();
        let try_get_name = |i: usize| {
            if let Some(arg_name) = args.as_ref().and_then(|args| args.get(i)) {
                arg_name.clone()
            } else {
                format!("name_{i}")
            }
        };
        let col_sch: Vec<_> = columns
            .iter()
            .enumerate()
            .map(|(i, col)| ColumnSchema::new(try_get_name(i), col.data_type(), true))
            .collect();
        let schema = datatypes::schema::Schema::new(col_sch);
        Arc::new(schema)
    }
}

impl Function for PyUDF {
    fn name(&self) -> &str {
        &self.copr.name
    }

    fn return_type(
        &self,
        _input_types: &[datatypes::prelude::ConcreteDataType],
    ) -> common_query::error::Result<datatypes::prelude::ConcreteDataType> {
        // TODO(discord9): use correct return annotation if exist
        match self.copr.return_types.first() {
            Some(Some(AnnotationInfo {
                datatype: Some(ty), ..
            })) => Ok(ty.clone()),
            _ => PyUdfSnafu {
                msg: "Can't found return type for python UDF {self}",
            }
            .fail(),
        }
    }

    fn signature(&self) -> common_query::prelude::Signature {
        if self.copr.arg_types.is_empty() {
            return Signature::any(0, Volatility::Volatile);
        }

        // try our best to get a type signature
        let mut arg_types = Vec::with_capacity(self.copr.arg_types.len());
        let mut know_all_types = true;
        for ty in self.copr.arg_types.iter() {
            match ty {
                Some(AnnotationInfo {
                    datatype: Some(ty), ..
                }) => arg_types.push(ty.clone()),
                _ => {
                    know_all_types = false;
                    break;
                }
            }
        }

        // The Volatility should be volatile, the return value from evaluation may be changed.
        if know_all_types {
            Signature::variadic(arg_types, Volatility::Volatile)
        } else {
            Signature::any(self.copr.arg_types.len(), Volatility::Volatile)
        }
    }

    fn eval(
        &self,
        func_ctx: common_function::function::FunctionContext,
        columns: &[datatypes::vectors::VectorRef],
    ) -> common_query::error::Result<datatypes::vectors::VectorRef> {
        // FIXME(discord9): exec_parsed require a RecordBatch(basically a Vector+Schema), where schema can't pop out from nowhere, right?
        let schema = self.fake_schema(columns);
        let columns = columns.to_vec();
        let rb = Some(RecordBatch::new(schema, columns).context(UdfTempRecordBatchSnafu)?);

        let res = exec_parsed(
            &self.copr,
            &rb,
            &HashMap::new(),
            &EvalContext {
                query_ctx: func_ctx.query_ctx.clone(),
            },
        )
        .map_err(BoxedError::new)
        .context(common_query::error::ExecuteSnafu)?;

        let len = res.columns().len();
        if len == 0 {
            return PyUdfSnafu {
                msg: "Python UDF should return exactly one column, found zero column".to_string(),
            }
            .fail();
        } // if more than one columns, just return first one

        // TODO(discord9): more error handling
        let res0 = res.column(0);
        Ok(res0.clone())
    }
}

pub struct PyScript {
    query_engine: QueryEngineRef,
    pub(crate) copr: CoprocessorRef,
}

impl PyScript {
    pub fn from_script(script: &str, query_engine: QueryEngineRef) -> Result<Self> {
        let copr = Arc::new(parse::parse_and_compile_copr(
            script,
            Some(query_engine.clone()),
        )?);

        Ok(PyScript { copr, query_engine })
    }
    /// Register Current Script as UDF, register name is same as script name
    /// FIXME(discord9): possible inject attack?
    pub async fn register_udf(&self) {
        let udf = PyUDF::from_copr(self.copr.clone());
        PyUDF::register_as_udf(udf.clone());
        PyUDF::register_to_query_engine(udf, self.query_engine.clone());
    }
}

pub struct CoprStream {
    stream: SendableRecordBatchStream,
    copr: CoprocessorRef,
    ret_schema: SchemaRef,
    params: HashMap<String, String>,
    eval_ctx: EvalContext,
}

impl CoprStream {
    fn try_new(
        stream: SendableRecordBatchStream,
        copr: CoprocessorRef,
        params: HashMap<String, String>,
        eval_ctx: EvalContext,
    ) -> Result<Self> {
        let mut schema = vec![];
        for (ty, name) in copr.return_types.iter().zip(&copr.deco_args.ret_names) {
            let ty = ty.clone().ok_or_else(|| {
                PyRuntimeSnafu {
                    msg: "return type not annotated, can't generate schema",
                }
                .build()
            })?;
            let is_nullable = ty.is_nullable;
            let ty = ty.datatype.ok_or_else(|| {
                PyRuntimeSnafu {
                    msg: "return type not annotated, can't generate schema",
                }
                .build()
            })?;
            let col_schema = ColumnSchema::new(name, ty, is_nullable);
            schema.push(col_schema);
        }
        let ret_schema = Arc::new(Schema::new(schema));
        Ok(Self {
            stream,
            copr,
            ret_schema,
            params,
            eval_ctx,
        })
    }
}

impl RecordBatchStream for CoprStream {
    fn schema(&self) -> SchemaRef {
        // FIXME(discord9): use copr returns for schema
        self.ret_schema.clone()
    }

    fn output_ordering(&self) -> Option<&[OrderOption]> {
        None
    }

    fn metrics(&self) -> Option<RecordBatchMetrics> {
        None
    }
}

impl Stream for CoprStream {
    type Item = RecordBatchResult<RecordBatch>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        match Pin::new(&mut self.stream).poll_next(cx) {
            Poll::Pending => Poll::Pending,
            Poll::Ready(Some(Ok(recordbatch))) => {
                let batch =
                    exec_parsed(&self.copr, &Some(recordbatch), &self.params, &self.eval_ctx)
                        .map_err(BoxedError::new)
                        .context(ExternalSnafu)?;
                Poll::Ready(Some(Ok(batch)))
            }
            Poll::Ready(other) => Poll::Ready(other),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.stream.size_hint()
    }
}

#[async_trait]
impl Script for PyScript {
    type Error = error::Error;

    fn engine_name(&self) -> &str {
        PY_ENGINE
    }

    fn as_any(&self) -> &dyn Any {
        self
    }

    async fn execute(&self, params: HashMap<String, String>, ctx: EvalContext) -> Result<Output> {
        if let Some(sql) = &self.copr.deco_args.sql {
            let stmt = QueryLanguageParser::parse_sql(sql, &ctx.query_ctx).unwrap();
            ensure!(
                matches!(stmt, QueryStatement::Sql(Statement::Query { .. })),
                error::UnsupportedSqlSnafu { sql }
            );
            let plan = self
                .query_engine
                .planner()
                .plan(&stmt, ctx.query_ctx.clone())
                .await
                .context(DatabaseQuerySnafu)?;
            let res = self
                .query_engine
                .execute(plan, ctx.query_ctx.clone())
                .await
                .context(DatabaseQuerySnafu)?;
            let copr = self.copr.clone();
            match res.data {
                OutputData::Stream(stream) => Ok(Output::new_with_stream(Box::pin(
                    CoprStream::try_new(stream, copr, params, ctx)?,
                ))),
                _ => unreachable!(),
            }
        } else {
            let copr = self.copr.clone();
            let params = params.clone();
            let batch = spawn_blocking_script(move || exec_parsed(&copr, &None, &params, &ctx))
                .await
                .context(TokioJoinSnafu)??;
            let batches = RecordBatches::try_new(batch.schema.clone(), vec![batch]).unwrap();
            Ok(Output::new_with_record_batches(batches))
        }
    }
}

pub struct PyEngine {
    query_engine: QueryEngineRef,
}

impl PyEngine {
    pub fn new(query_engine: QueryEngineRef) -> Self {
        Self { query_engine }
    }
}

#[async_trait]
impl ScriptEngine for PyEngine {
    type Error = error::Error;
    type Script = PyScript;

    fn name(&self) -> &str {
        PY_ENGINE
    }

    fn as_any(&self) -> &dyn Any {
        self
    }

    async fn compile(&self, script: &str, _ctx: CompileContext) -> Result<PyScript> {
        let copr = Arc::new(parse::parse_and_compile_copr(
            script,
            Some(self.query_engine.clone()),
        )?);

        Ok(PyScript {
            copr,
            query_engine: self.query_engine.clone(),
        })
    }
}

#[cfg(test)]
pub(crate) use tests::sample_script_engine;

#[cfg(test)]
mod tests {
    use catalog::memory::MemoryCatalogManager;
    use common_catalog::consts::NUMBERS_TABLE_ID;
    use common_recordbatch::util;
    use datatypes::prelude::ScalarVector;
    use datatypes::value::Value;
    use datatypes::vectors::{Float64Vector, Int64Vector};
    use query::QueryEngineFactory;
    use table::table::numbers::NumbersTable;

    use super::*;

    pub(crate) fn sample_script_engine() -> PyEngine {
        let catalog_manager =
            MemoryCatalogManager::new_with_table(NumbersTable::table(NUMBERS_TABLE_ID));
        let query_engine =
            QueryEngineFactory::new(catalog_manager, None, None, None, None, false).query_engine();

        PyEngine::new(query_engine.clone())
    }

    #[tokio::test]
    async fn test_sql_in_py() {
        let script_engine = sample_script_engine();

        let script = r#"
import greptime as gt

@copr(args=["number"], returns = ["number"], sql = "select * from numbers")
def test(number) -> vector[u32]:
    from greptime import query
    return query().sql("select * from numbers")[0]
"#;
        let script = script_engine
            .compile(script, CompileContext::default())
            .await
            .unwrap();
        let output = script
            .execute(HashMap::default(), EvalContext::default())
            .await
            .unwrap();
        let res = common_recordbatch::util::collect_batches(match output.data {
            OutputData::Stream(s) => s,
            _ => unreachable!(),
        })
        .await
        .unwrap();
        let rb = res.iter().next().expect("One and only one recordbatch");
        assert_eq!(rb.column(0).len(), 100);
    }

    #[tokio::test]
    async fn test_user_params_in_py() {
        let script_engine = sample_script_engine();

        let script = r#"
@copr(returns = ["number"])
def test(**params) -> vector[i64]:
    return int(params['a']) + int(params['b'])
"#;
        let script = script_engine
            .compile(script, CompileContext::default())
            .await
            .unwrap();
        let params = HashMap::from([
            ("a".to_string(), "30".to_string()),
            ("b".to_string(), "12".to_string()),
        ]);
        let output = script
            .execute(params, EvalContext::default())
            .await
            .unwrap();
        let res = match output.data {
            OutputData::RecordBatches(s) => s,
            data => unreachable!("data: {data:?}"),
        };
        let rb = res.iter().next().expect("One and only one recordbatch");
        assert_eq!(rb.column(0).len(), 1);
        let result = rb.column(0).get(0);
        assert!(matches!(result, Value::Int64(42)));
    }

    #[tokio::test]
    async fn test_data_frame_in_py() {
        let script_engine = sample_script_engine();

        let script = r#"
from greptime import col

@copr(args=["number"], returns = ["number"], sql = "select * from numbers")
def test(number) -> vector[u32]:
    from greptime import PyDataFrame
    return PyDataFrame.from_sql("select * from numbers").filter(col("number")==col("number")).collect()[0][0]
"#;
        let script = script_engine
            .compile(script, CompileContext::default())
            .await
            .unwrap();
        let output = script
            .execute(HashMap::new(), EvalContext::default())
            .await
            .unwrap();
        let res = common_recordbatch::util::collect_batches(match output.data {
            OutputData::Stream(s) => s,
            data => unreachable!("data: {data:?}"),
        })
        .await
        .unwrap();
        let rb = res.iter().next().expect("One and only one recordbatch");
        assert_eq!(rb.column(0).len(), 100);
    }

    #[tokio::test]
    async fn test_compile_execute() {
        let script_engine = sample_script_engine();

        // To avoid divide by zero, the script divides `add(a, b)` by `g.sqrt(c + 1)` instead of `g.sqrt(c)`
        let script = r#"
import greptime as g
def add(a, b):
    return a + b;

@copr(args=["a", "b", "c"], returns = ["r"], sql="select number as a,number as b,number as c from numbers limit 100")
def test(a, b, c) -> vector[f64]:
    return add(a, b) / g.sqrt(c + 1)
"#;
        let script = script_engine
            .compile(script, CompileContext::default())
            .await
            .unwrap();
        let output = script
            .execute(HashMap::new(), EvalContext::default())
            .await
            .unwrap();
        match output.data {
            OutputData::Stream(stream) => {
                let numbers = util::collect(stream).await.unwrap();

                assert_eq!(1, numbers.len());
                let number = &numbers[0];
                assert_eq!(number.num_columns(), 1);
                assert_eq!("r", number.schema.column_schemas()[0].name);

                assert_eq!(1, number.num_columns());
                assert_eq!(100, number.column(0).len());
                let rows = number
                    .column(0)
                    .as_any()
                    .downcast_ref::<Float64Vector>()
                    .unwrap();
                assert_eq!(0f64, rows.get_data(0).unwrap());
                assert_eq!((99f64 + 99f64) / 100f64.sqrt(), rows.get_data(99).unwrap())
            }
            _ => unreachable!(),
        }

        // test list comprehension
        let script = r#"
import greptime as gt

@copr(args=["number"], returns = ["r"], sql="select number from numbers limit 100")
def test(a) -> vector[i64]:
    return gt.vector([x for x in a if x % 2 == 0])
"#;
        let script = script_engine
            .compile(script, CompileContext::default())
            .await
            .unwrap();
        let output = script
            .execute(HashMap::new(), EvalContext::default())
            .await
            .unwrap();
        match output.data {
            OutputData::Stream(stream) => {
                let numbers = util::collect(stream).await.unwrap();

                assert_eq!(1, numbers.len());
                let number = &numbers[0];
                assert_eq!(number.num_columns(), 1);
                assert_eq!("r", number.schema.column_schemas()[0].name);

                assert_eq!(1, number.num_columns());
                assert_eq!(50, number.column(0).len());
                let rows = number
                    .column(0)
                    .as_any()
                    .downcast_ref::<Int64Vector>()
                    .unwrap();
                assert_eq!(0, rows.get_data(0).unwrap());
                assert_eq!(98, rows.get_data(49).unwrap())
            }
            _ => unreachable!(),
        }
    }
}