query/optimizer/
windowed_sort.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashSet;
use std::sync::Arc;

use datafusion::physical_optimizer::PhysicalOptimizerRule;
use datafusion::physical_plan::coalesce_batches::CoalesceBatchesExec;
use datafusion::physical_plan::coalesce_partitions::CoalescePartitionsExec;
use datafusion::physical_plan::filter::FilterExec;
use datafusion::physical_plan::projection::ProjectionExec;
use datafusion::physical_plan::repartition::RepartitionExec;
use datafusion::physical_plan::sorts::sort::SortExec;
use datafusion::physical_plan::sorts::sort_preserving_merge::SortPreservingMergeExec;
use datafusion::physical_plan::ExecutionPlan;
use datafusion_common::tree_node::{Transformed, TreeNode};
use datafusion_common::Result as DataFusionResult;
use datafusion_physical_expr::expressions::Column as PhysicalColumn;
use datafusion_physical_expr::LexOrdering;
use store_api::region_engine::PartitionRange;
use table::table::scan::RegionScanExec;

use crate::part_sort::PartSortExec;
use crate::window_sort::WindowedSortExec;

/// Optimize rule for windowed sort.
///
/// This is expected to run after [`ScanHint`] and [`ParallelizeScan`].
/// It would change the original sort to a custom plan. To make sure
/// other rules are applied correctly, this rule can be run as later as
/// possible.
///
/// [`ScanHint`]: crate::optimizer::scan_hint::ScanHintRule
/// [`ParallelizeScan`]: crate::optimizer::parallelize_scan::ParallelizeScan
#[derive(Debug)]
pub struct WindowedSortPhysicalRule;

impl PhysicalOptimizerRule for WindowedSortPhysicalRule {
    fn optimize(
        &self,
        plan: Arc<dyn ExecutionPlan>,
        config: &datafusion::config::ConfigOptions,
    ) -> DataFusionResult<Arc<dyn ExecutionPlan>> {
        Self::do_optimize(plan, config)
    }

    fn name(&self) -> &str {
        "WindowedSortRule"
    }

    fn schema_check(&self) -> bool {
        false
    }
}

impl WindowedSortPhysicalRule {
    fn do_optimize(
        plan: Arc<dyn ExecutionPlan>,
        _config: &datafusion::config::ConfigOptions,
    ) -> DataFusionResult<Arc<dyn ExecutionPlan>> {
        let result = plan
            .transform_down(|plan| {
                if let Some(sort_exec) = plan.as_any().downcast_ref::<SortExec>() {
                    // TODO: support multiple expr in windowed sort
                    if sort_exec.expr().len() != 1 {
                        return Ok(Transformed::no(plan));
                    }

                    let preserve_partitioning = sort_exec.preserve_partitioning();

                    let sort_input = remove_repartition(sort_exec.input().clone())?.data;
                    let sort_input =
                        remove_coalesce_batches_exec(sort_input, sort_exec.fetch())?.data;

                    // Gets scanner info from the input without repartition before filter.
                    let Some(scanner_info) = fetch_partition_range(sort_input.clone())? else {
                        return Ok(Transformed::no(plan));
                    };
                    let input_schema = sort_input.schema();

                    if let Some(first_sort_expr) = sort_exec.expr().first()
                        && let Some(column_expr) = first_sort_expr
                            .expr
                            .as_any()
                            .downcast_ref::<PhysicalColumn>()
                        && scanner_info
                            .time_index
                            .contains(input_schema.field(column_expr.index()).name())
                    {
                    } else {
                        return Ok(Transformed::no(plan));
                    }
                    let first_sort_expr = sort_exec.expr().first().unwrap().clone();

                    // PartSortExec is unnecessary if:
                    // - there is no tag column, and
                    // - the sort is ascending on the time index column
                    let new_input = if scanner_info.tag_columns.is_empty()
                        && !first_sort_expr.options.descending
                    {
                        sort_input
                    } else {
                        Arc::new(PartSortExec::new(
                            first_sort_expr.clone(),
                            sort_exec.fetch(),
                            scanner_info.partition_ranges.clone(),
                            sort_input,
                        ))
                    };

                    let windowed_sort_exec = WindowedSortExec::try_new(
                        first_sort_expr,
                        sort_exec.fetch(),
                        scanner_info.partition_ranges,
                        new_input,
                    )?;

                    if !preserve_partitioning {
                        let order_preserving_merge = SortPreservingMergeExec::new(
                            LexOrdering::new(sort_exec.expr().to_vec()),
                            Arc::new(windowed_sort_exec),
                        );
                        return Ok(Transformed {
                            data: Arc::new(order_preserving_merge),
                            transformed: true,
                            tnr: datafusion_common::tree_node::TreeNodeRecursion::Stop,
                        });
                    } else {
                        return Ok(Transformed {
                            data: Arc::new(windowed_sort_exec),
                            transformed: true,
                            tnr: datafusion_common::tree_node::TreeNodeRecursion::Stop,
                        });
                    }
                }

                Ok(Transformed::no(plan))
            })?
            .data;

        Ok(result)
    }
}

#[derive(Debug)]
struct ScannerInfo {
    partition_ranges: Vec<Vec<PartitionRange>>,
    time_index: HashSet<String>,
    tag_columns: Vec<String>,
}

fn fetch_partition_range(input: Arc<dyn ExecutionPlan>) -> DataFusionResult<Option<ScannerInfo>> {
    let mut partition_ranges = None;
    let mut time_index = HashSet::new();
    let mut alias_map = Vec::new();
    let mut tag_columns = None;
    let mut is_batch_coalesced = false;

    input.transform_up(|plan| {
        // Unappliable case, reset the state.
        if plan.as_any().is::<RepartitionExec>()
            || plan.as_any().is::<CoalescePartitionsExec>()
            || plan.as_any().is::<SortExec>()
            || plan.as_any().is::<WindowedSortExec>()
        {
            partition_ranges = None;
        }

        if plan.as_any().is::<CoalesceBatchesExec>() {
            is_batch_coalesced = true;
        }

        // TODO(discord9): do this in logical plan instead as it's lessy bugy there
        // Collects alias of the time index column.
        if let Some(projection) = plan.as_any().downcast_ref::<ProjectionExec>() {
            for (expr, output_name) in projection.expr() {
                if let Some(column_expr) = expr.as_any().downcast_ref::<PhysicalColumn>() {
                    alias_map.push((column_expr.name().to_string(), output_name.clone()));
                }
            }
            // resolve alias properly
            time_index = resolve_alias(&alias_map, &time_index);
        }

        if let Some(region_scan_exec) = plan.as_any().downcast_ref::<RegionScanExec>() {
            partition_ranges = Some(region_scan_exec.get_uncollapsed_partition_ranges());
            // Reset time index column.
            time_index = HashSet::from([region_scan_exec.time_index()]);
            tag_columns = Some(region_scan_exec.tag_columns());

            // set distinguish_partition_ranges to true, this is an incorrect workaround
            if !is_batch_coalesced {
                region_scan_exec.with_distinguish_partition_range(true);
            }
        }

        Ok(Transformed::no(plan))
    })?;

    let result = try {
        ScannerInfo {
            partition_ranges: partition_ranges?,
            time_index,
            tag_columns: tag_columns?,
        }
    };

    Ok(result)
}

/// Removes the repartition plan between the filter and region scan.
fn remove_repartition(
    plan: Arc<dyn ExecutionPlan>,
) -> DataFusionResult<Transformed<Arc<dyn ExecutionPlan>>> {
    plan.transform_down(|plan| {
        if plan.as_any().is::<FilterExec>() {
            // Checks child.
            let maybe_repartition = plan.children()[0];
            if maybe_repartition.as_any().is::<RepartitionExec>() {
                let maybe_scan = maybe_repartition.children()[0];
                if maybe_scan.as_any().is::<RegionScanExec>() {
                    let new_filter = plan.clone().with_new_children(vec![maybe_scan.clone()])?;
                    return Ok(Transformed::yes(new_filter));
                }
            }
        }

        Ok(Transformed::no(plan))
    })
}

/// Remove `CoalesceBatchesExec` if the limit is less than the batch size.
///
/// so that if limit is too small we can avoid need to scan for more rows than necessary
fn remove_coalesce_batches_exec(
    plan: Arc<dyn ExecutionPlan>,
    fetch: Option<usize>,
) -> DataFusionResult<Transformed<Arc<dyn ExecutionPlan>>> {
    let Some(fetch) = fetch else {
        return Ok(Transformed::no(plan));
    };

    // Avoid removing multiple coalesce batches
    let mut is_done = false;

    plan.transform_down(|plan| {
        if let Some(coalesce_batches_exec) = plan.as_any().downcast_ref::<CoalesceBatchesExec>() {
            let target_batch_size = coalesce_batches_exec.target_batch_size();
            if fetch < target_batch_size && !is_done {
                is_done = true;
                return Ok(Transformed::yes(coalesce_batches_exec.input().clone()));
            }
        }

        Ok(Transformed::no(plan))
    })
}

/// Resolves alias of the time index column.
///
/// i.e if a is time index, alias= {a:b, b:c}, then result should be {a, b}(not {a, c}) because projection is not transitive
/// if alias={b:a} and a is time index, then return empty
fn resolve_alias(alias_map: &[(String, String)], time_index: &HashSet<String>) -> HashSet<String> {
    // available old name for time index
    let mut avail_old_name = time_index.clone();
    let mut new_time_index = HashSet::new();
    for (old, new) in alias_map {
        if time_index.contains(old) {
            new_time_index.insert(new.clone());
        } else if time_index.contains(new) && old != new {
            // other alias to time index, remove the old name
            avail_old_name.remove(new);
            continue;
        }
    }
    // add the remaining time index that is not in alias map
    new_time_index.extend(avail_old_name);
    new_time_index
}

#[cfg(test)]
mod test {
    use itertools::Itertools;

    use super::*;

    #[test]
    fn test_alias() {
        let testcases = [
            // notice the old name is still in the result
            (
                vec![("a", "b"), ("b", "c")],
                HashSet::from(["a"]),
                HashSet::from(["a", "b"]),
            ),
            // alias swap
            (
                vec![("b", "a"), ("a", "b")],
                HashSet::from(["a"]),
                HashSet::from(["b"]),
            ),
            (
                vec![("b", "a"), ("b", "c")],
                HashSet::from(["a"]),
                HashSet::from([]),
            ),
            // not in alias map
            (
                vec![("c", "d"), ("d", "c")],
                HashSet::from(["a"]),
                HashSet::from(["a"]),
            ),
            // no alias
            (vec![], HashSet::from(["a"]), HashSet::from(["a"])),
            // empty time index
            (vec![], HashSet::from([]), HashSet::from([])),
        ];
        for (alias_map, time_index, expected) in testcases {
            let alias_map = alias_map
                .into_iter()
                .map(|(k, v)| (k.to_string(), v.to_string()))
                .collect_vec();
            let time_index = time_index.into_iter().map(|i| i.to_string()).collect();
            let expected: HashSet<String> = expected.into_iter().map(|i| i.to_string()).collect();

            assert_eq!(
                expected,
                resolve_alias(&alias_map, &time_index),
                "alias_map={:?}, time_index={:?}",
                alias_map,
                time_index
            );
        }
    }
}