query/optimizer/
parallelize_scan.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::BinaryHeap;
use std::sync::Arc;

use common_telemetry::debug;
use datafusion::config::ConfigOptions;
use datafusion::physical_optimizer::PhysicalOptimizerRule;
use datafusion::physical_plan::sorts::sort::SortExec;
use datafusion::physical_plan::ExecutionPlan;
use datafusion_common::tree_node::{Transformed, TreeNode};
use datafusion_common::{DataFusionError, Result};
use store_api::region_engine::PartitionRange;
use table::table::scan::RegionScanExec;

#[derive(Debug)]
pub struct ParallelizeScan;

impl PhysicalOptimizerRule for ParallelizeScan {
    fn optimize(
        &self,
        plan: Arc<dyn ExecutionPlan>,
        config: &ConfigOptions,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Self::do_optimize(plan, config)
    }

    fn name(&self) -> &str {
        "parallelize_scan"
    }

    fn schema_check(&self) -> bool {
        true
    }
}

impl ParallelizeScan {
    fn do_optimize(
        plan: Arc<dyn ExecutionPlan>,
        config: &ConfigOptions,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        let mut first_order_expr = None;

        let result = plan
            .transform_down(|plan| {
                if let Some(sort_exec) = plan.as_any().downcast_ref::<SortExec>() {
                    // save the first order expr
                    first_order_expr = sort_exec.expr().first().cloned();
                } else if let Some(region_scan_exec) =
                    plan.as_any().downcast_ref::<RegionScanExec>()
                {
                    if region_scan_exec.is_partition_set() {
                        return Ok(Transformed::no(plan));
                    }

                    let ranges = region_scan_exec.get_partition_ranges();
                    let total_range_num = ranges.len();
                    let expected_partition_num = config.execution.target_partitions;

                    // assign ranges to each partition
                    let mut partition_ranges =
                        Self::assign_partition_range(ranges, expected_partition_num);
                    debug!(
                        "Assign {total_range_num} ranges to {expected_partition_num} partitions"
                    );

                    // Sort the ranges in each partition based on the order expr
                    //
                    // This optimistically assumes that the first order expr is on the time index column
                    // to skip the validation of the order expr. As it's not harmful if this condition
                    // is not met.
                    if let Some(order_expr) = &first_order_expr
                        && order_expr.options.descending
                    {
                        for ranges in partition_ranges.iter_mut() {
                            ranges.sort_by(|a, b| b.end.cmp(&a.end));
                        }
                    } else {
                        for ranges in partition_ranges.iter_mut() {
                            ranges.sort_by(|a, b| a.start.cmp(&b.start));
                        }
                    }

                    // update the partition ranges
                    let new_exec = region_scan_exec
                        .with_new_partitions(partition_ranges, expected_partition_num)
                        .map_err(|e| DataFusionError::External(e.into_inner()))?;
                    return Ok(Transformed::yes(Arc::new(new_exec)));
                }

                // The plan might be modified, but it's modified in-place so we always return
                // Transformed::no(plan) to indicate there is no "new child"
                Ok(Transformed::no(plan))
            })?
            .data;

        Ok(result)
    }

    /// Distribute [`PartitionRange`]s to each partition.
    ///
    /// Currently we assign ranges to partitions according to their rows so each partition
    /// has similar number of rows.
    /// This method may return partitions with smaller number than `expected_partition_num`
    /// if the number of ranges is smaller than `expected_partition_num`. But this will
    /// return at least one partition.
    fn assign_partition_range(
        mut ranges: Vec<PartitionRange>,
        expected_partition_num: usize,
    ) -> Vec<Vec<PartitionRange>> {
        if ranges.is_empty() {
            // Returns a single partition with no range.
            return vec![vec![]];
        }

        if ranges.len() == 1 {
            return vec![ranges];
        }

        // Sort ranges by number of rows in descending order.
        ranges.sort_by(|a, b| b.num_rows.cmp(&a.num_rows));
        // Get the max row number of the ranges. Note that the number of rows may be 0 if statistics are not available.
        let max_rows = ranges[0].num_rows;
        let total_rows = ranges.iter().map(|range| range.num_rows).sum::<usize>();
        // Computes the partition num by the max row number. This eliminates the unbalance of the partitions.
        let balanced_partition_num = if max_rows > 0 {
            total_rows.div_ceil(max_rows)
        } else {
            ranges.len()
        };
        let actual_partition_num = expected_partition_num.min(balanced_partition_num).max(1);
        let mut partition_ranges = vec![vec![]; actual_partition_num];

        #[derive(Eq, PartialEq)]
        struct HeapNode {
            num_rows: usize,
            partition_idx: usize,
        }

        impl Ord for HeapNode {
            fn cmp(&self, other: &Self) -> std::cmp::Ordering {
                // Reverse for min-heap.
                self.num_rows.cmp(&other.num_rows).reverse()
            }
        }

        impl PartialOrd for HeapNode {
            fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
                Some(self.cmp(other))
            }
        }

        let mut part_heap =
            BinaryHeap::from_iter((0..actual_partition_num).map(|partition_idx| HeapNode {
                num_rows: 0,
                partition_idx,
            }));

        // Assigns the range to the partition with the smallest number of rows.
        for range in ranges {
            // Safety: actual_partition_num always > 0.
            let mut node = part_heap.pop().unwrap();
            let partition_idx = node.partition_idx;
            node.num_rows += range.num_rows;
            partition_ranges[partition_idx].push(range);
            part_heap.push(node);
        }

        partition_ranges
    }
}

#[cfg(test)]
mod test {
    use common_time::timestamp::TimeUnit;
    use common_time::Timestamp;

    use super::*;

    #[test]
    fn test_assign_partition_range() {
        let ranges = vec![
            PartitionRange {
                start: Timestamp::new(0, TimeUnit::Second),
                end: Timestamp::new(10, TimeUnit::Second),
                num_rows: 100,
                identifier: 1,
            },
            PartitionRange {
                start: Timestamp::new(10, TimeUnit::Second),
                end: Timestamp::new(20, TimeUnit::Second),
                num_rows: 200,
                identifier: 2,
            },
            PartitionRange {
                start: Timestamp::new(20, TimeUnit::Second),
                end: Timestamp::new(30, TimeUnit::Second),
                num_rows: 150,
                identifier: 3,
            },
            PartitionRange {
                start: Timestamp::new(30, TimeUnit::Second),
                end: Timestamp::new(40, TimeUnit::Second),
                num_rows: 250,
                identifier: 4,
            },
        ];

        // assign to 2 partitions
        let expected_partition_num = 2;
        let result =
            ParallelizeScan::assign_partition_range(ranges.clone(), expected_partition_num);
        let expected = vec![
            vec![
                PartitionRange {
                    start: Timestamp::new(30, TimeUnit::Second),
                    end: Timestamp::new(40, TimeUnit::Second),
                    num_rows: 250,
                    identifier: 4,
                },
                PartitionRange {
                    start: Timestamp::new(0, TimeUnit::Second),
                    end: Timestamp::new(10, TimeUnit::Second),
                    num_rows: 100,
                    identifier: 1,
                },
            ],
            vec![
                PartitionRange {
                    start: Timestamp::new(10, TimeUnit::Second),
                    end: Timestamp::new(20, TimeUnit::Second),
                    num_rows: 200,
                    identifier: 2,
                },
                PartitionRange {
                    start: Timestamp::new(20, TimeUnit::Second),
                    end: Timestamp::new(30, TimeUnit::Second),
                    num_rows: 150,
                    identifier: 3,
                },
            ],
        ];
        assert_eq!(result, expected);

        // assign 4 ranges to 5 partitions. Only 4 partitions are returned.
        let expected_partition_num = 5;
        let result = ParallelizeScan::assign_partition_range(ranges, expected_partition_num);
        let expected = vec![
            vec![PartitionRange {
                start: Timestamp::new(30, TimeUnit::Second),
                end: Timestamp::new(40, TimeUnit::Second),
                num_rows: 250,
                identifier: 4,
            }],
            vec![PartitionRange {
                start: Timestamp::new(10, TimeUnit::Second),
                end: Timestamp::new(20, TimeUnit::Second),
                num_rows: 200,
                identifier: 2,
            }],
            vec![
                PartitionRange {
                    start: Timestamp::new(20, TimeUnit::Second),
                    end: Timestamp::new(30, TimeUnit::Second),
                    num_rows: 150,
                    identifier: 3,
                },
                PartitionRange {
                    start: Timestamp::new(0, TimeUnit::Second),
                    end: Timestamp::new(10, TimeUnit::Second),
                    num_rows: 100,
                    identifier: 1,
                },
            ],
        ];
        assert_eq!(result, expected);

        // assign 0 ranges to 5 partitions. Only 1 partition is returned.
        let result = ParallelizeScan::assign_partition_range(vec![], 5);
        assert_eq!(result.len(), 1);
    }

    #[test]
    fn test_assign_unbalance_partition_range() {
        let ranges = vec![
            PartitionRange {
                start: Timestamp::new(0, TimeUnit::Second),
                end: Timestamp::new(10, TimeUnit::Second),
                num_rows: 100,
                identifier: 1,
            },
            PartitionRange {
                start: Timestamp::new(10, TimeUnit::Second),
                end: Timestamp::new(20, TimeUnit::Second),
                num_rows: 200,
                identifier: 2,
            },
            PartitionRange {
                start: Timestamp::new(20, TimeUnit::Second),
                end: Timestamp::new(30, TimeUnit::Second),
                num_rows: 150,
                identifier: 3,
            },
            PartitionRange {
                start: Timestamp::new(30, TimeUnit::Second),
                end: Timestamp::new(40, TimeUnit::Second),
                num_rows: 2500,
                identifier: 4,
            },
        ];

        // assign to 2 partitions
        let expected_partition_num = 2;
        let result =
            ParallelizeScan::assign_partition_range(ranges.clone(), expected_partition_num);
        let expected = vec![
            vec![PartitionRange {
                start: Timestamp::new(30, TimeUnit::Second),
                end: Timestamp::new(40, TimeUnit::Second),
                num_rows: 2500,
                identifier: 4,
            }],
            vec![
                PartitionRange {
                    start: Timestamp::new(10, TimeUnit::Second),
                    end: Timestamp::new(20, TimeUnit::Second),
                    num_rows: 200,
                    identifier: 2,
                },
                PartitionRange {
                    start: Timestamp::new(20, TimeUnit::Second),
                    end: Timestamp::new(30, TimeUnit::Second),
                    num_rows: 150,
                    identifier: 3,
                },
                PartitionRange {
                    start: Timestamp::new(0, TimeUnit::Second),
                    end: Timestamp::new(10, TimeUnit::Second),
                    num_rows: 100,
                    identifier: 1,
                },
            ],
        ];
        assert_eq!(result, expected);
    }
}