query/optimizer/parallelize_scan.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::BinaryHeap;
use std::sync::Arc;
use common_telemetry::debug;
use datafusion::config::ConfigOptions;
use datafusion::physical_optimizer::PhysicalOptimizerRule;
use datafusion::physical_plan::sorts::sort::SortExec;
use datafusion::physical_plan::ExecutionPlan;
use datafusion_common::tree_node::{Transformed, TreeNode};
use datafusion_common::{DataFusionError, Result};
use store_api::region_engine::PartitionRange;
use table::table::scan::RegionScanExec;
#[derive(Debug)]
pub struct ParallelizeScan;
impl PhysicalOptimizerRule for ParallelizeScan {
fn optimize(
&self,
plan: Arc<dyn ExecutionPlan>,
config: &ConfigOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
Self::do_optimize(plan, config)
}
fn name(&self) -> &str {
"parallelize_scan"
}
fn schema_check(&self) -> bool {
true
}
}
impl ParallelizeScan {
fn do_optimize(
plan: Arc<dyn ExecutionPlan>,
config: &ConfigOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
let mut first_order_expr = None;
let result = plan
.transform_down(|plan| {
if let Some(sort_exec) = plan.as_any().downcast_ref::<SortExec>() {
// save the first order expr
first_order_expr = sort_exec.expr().first().cloned();
} else if let Some(region_scan_exec) =
plan.as_any().downcast_ref::<RegionScanExec>()
{
if region_scan_exec.is_partition_set() {
return Ok(Transformed::no(plan));
}
let ranges = region_scan_exec.get_partition_ranges();
let total_range_num = ranges.len();
let expected_partition_num = config.execution.target_partitions;
// assign ranges to each partition
let mut partition_ranges =
Self::assign_partition_range(ranges, expected_partition_num);
debug!(
"Assign {total_range_num} ranges to {expected_partition_num} partitions"
);
// Sort the ranges in each partition based on the order expr
//
// This optimistically assumes that the first order expr is on the time index column
// to skip the validation of the order expr. As it's not harmful if this condition
// is not met.
if let Some(order_expr) = &first_order_expr
&& order_expr.options.descending
{
for ranges in partition_ranges.iter_mut() {
ranges.sort_by(|a, b| b.end.cmp(&a.end));
}
} else {
for ranges in partition_ranges.iter_mut() {
ranges.sort_by(|a, b| a.start.cmp(&b.start));
}
}
// update the partition ranges
let new_exec = region_scan_exec
.with_new_partitions(partition_ranges, expected_partition_num)
.map_err(|e| DataFusionError::External(e.into_inner()))?;
return Ok(Transformed::yes(Arc::new(new_exec)));
}
// The plan might be modified, but it's modified in-place so we always return
// Transformed::no(plan) to indicate there is no "new child"
Ok(Transformed::no(plan))
})?
.data;
Ok(result)
}
/// Distribute [`PartitionRange`]s to each partition.
///
/// Currently we assign ranges to partitions according to their rows so each partition
/// has similar number of rows.
/// This method may return partitions with smaller number than `expected_partition_num`
/// if the number of ranges is smaller than `expected_partition_num`. But this will
/// return at least one partition.
fn assign_partition_range(
mut ranges: Vec<PartitionRange>,
expected_partition_num: usize,
) -> Vec<Vec<PartitionRange>> {
if ranges.is_empty() {
// Returns a single partition with no range.
return vec![vec![]];
}
if ranges.len() == 1 {
return vec![ranges];
}
// Sort ranges by number of rows in descending order.
ranges.sort_by(|a, b| b.num_rows.cmp(&a.num_rows));
// Get the max row number of the ranges. Note that the number of rows may be 0 if statistics are not available.
let max_rows = ranges[0].num_rows;
let total_rows = ranges.iter().map(|range| range.num_rows).sum::<usize>();
// Computes the partition num by the max row number. This eliminates the unbalance of the partitions.
let balanced_partition_num = if max_rows > 0 {
total_rows.div_ceil(max_rows)
} else {
ranges.len()
};
let actual_partition_num = expected_partition_num.min(balanced_partition_num).max(1);
let mut partition_ranges = vec![vec![]; actual_partition_num];
#[derive(Eq, PartialEq)]
struct HeapNode {
num_rows: usize,
partition_idx: usize,
}
impl Ord for HeapNode {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
// Reverse for min-heap.
self.num_rows.cmp(&other.num_rows).reverse()
}
}
impl PartialOrd for HeapNode {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
let mut part_heap =
BinaryHeap::from_iter((0..actual_partition_num).map(|partition_idx| HeapNode {
num_rows: 0,
partition_idx,
}));
// Assigns the range to the partition with the smallest number of rows.
for range in ranges {
// Safety: actual_partition_num always > 0.
let mut node = part_heap.pop().unwrap();
let partition_idx = node.partition_idx;
node.num_rows += range.num_rows;
partition_ranges[partition_idx].push(range);
part_heap.push(node);
}
partition_ranges
}
}
#[cfg(test)]
mod test {
use common_time::timestamp::TimeUnit;
use common_time::Timestamp;
use super::*;
#[test]
fn test_assign_partition_range() {
let ranges = vec![
PartitionRange {
start: Timestamp::new(0, TimeUnit::Second),
end: Timestamp::new(10, TimeUnit::Second),
num_rows: 100,
identifier: 1,
},
PartitionRange {
start: Timestamp::new(10, TimeUnit::Second),
end: Timestamp::new(20, TimeUnit::Second),
num_rows: 200,
identifier: 2,
},
PartitionRange {
start: Timestamp::new(20, TimeUnit::Second),
end: Timestamp::new(30, TimeUnit::Second),
num_rows: 150,
identifier: 3,
},
PartitionRange {
start: Timestamp::new(30, TimeUnit::Second),
end: Timestamp::new(40, TimeUnit::Second),
num_rows: 250,
identifier: 4,
},
];
// assign to 2 partitions
let expected_partition_num = 2;
let result =
ParallelizeScan::assign_partition_range(ranges.clone(), expected_partition_num);
let expected = vec![
vec![
PartitionRange {
start: Timestamp::new(30, TimeUnit::Second),
end: Timestamp::new(40, TimeUnit::Second),
num_rows: 250,
identifier: 4,
},
PartitionRange {
start: Timestamp::new(0, TimeUnit::Second),
end: Timestamp::new(10, TimeUnit::Second),
num_rows: 100,
identifier: 1,
},
],
vec![
PartitionRange {
start: Timestamp::new(10, TimeUnit::Second),
end: Timestamp::new(20, TimeUnit::Second),
num_rows: 200,
identifier: 2,
},
PartitionRange {
start: Timestamp::new(20, TimeUnit::Second),
end: Timestamp::new(30, TimeUnit::Second),
num_rows: 150,
identifier: 3,
},
],
];
assert_eq!(result, expected);
// assign 4 ranges to 5 partitions. Only 4 partitions are returned.
let expected_partition_num = 5;
let result = ParallelizeScan::assign_partition_range(ranges, expected_partition_num);
let expected = vec![
vec![PartitionRange {
start: Timestamp::new(30, TimeUnit::Second),
end: Timestamp::new(40, TimeUnit::Second),
num_rows: 250,
identifier: 4,
}],
vec![PartitionRange {
start: Timestamp::new(10, TimeUnit::Second),
end: Timestamp::new(20, TimeUnit::Second),
num_rows: 200,
identifier: 2,
}],
vec![
PartitionRange {
start: Timestamp::new(20, TimeUnit::Second),
end: Timestamp::new(30, TimeUnit::Second),
num_rows: 150,
identifier: 3,
},
PartitionRange {
start: Timestamp::new(0, TimeUnit::Second),
end: Timestamp::new(10, TimeUnit::Second),
num_rows: 100,
identifier: 1,
},
],
];
assert_eq!(result, expected);
// assign 0 ranges to 5 partitions. Only 1 partition is returned.
let result = ParallelizeScan::assign_partition_range(vec![], 5);
assert_eq!(result.len(), 1);
}
#[test]
fn test_assign_unbalance_partition_range() {
let ranges = vec![
PartitionRange {
start: Timestamp::new(0, TimeUnit::Second),
end: Timestamp::new(10, TimeUnit::Second),
num_rows: 100,
identifier: 1,
},
PartitionRange {
start: Timestamp::new(10, TimeUnit::Second),
end: Timestamp::new(20, TimeUnit::Second),
num_rows: 200,
identifier: 2,
},
PartitionRange {
start: Timestamp::new(20, TimeUnit::Second),
end: Timestamp::new(30, TimeUnit::Second),
num_rows: 150,
identifier: 3,
},
PartitionRange {
start: Timestamp::new(30, TimeUnit::Second),
end: Timestamp::new(40, TimeUnit::Second),
num_rows: 2500,
identifier: 4,
},
];
// assign to 2 partitions
let expected_partition_num = 2;
let result =
ParallelizeScan::assign_partition_range(ranges.clone(), expected_partition_num);
let expected = vec![
vec![PartitionRange {
start: Timestamp::new(30, TimeUnit::Second),
end: Timestamp::new(40, TimeUnit::Second),
num_rows: 2500,
identifier: 4,
}],
vec![
PartitionRange {
start: Timestamp::new(10, TimeUnit::Second),
end: Timestamp::new(20, TimeUnit::Second),
num_rows: 200,
identifier: 2,
},
PartitionRange {
start: Timestamp::new(20, TimeUnit::Second),
end: Timestamp::new(30, TimeUnit::Second),
num_rows: 150,
identifier: 3,
},
PartitionRange {
start: Timestamp::new(0, TimeUnit::Second),
end: Timestamp::new(10, TimeUnit::Second),
num_rows: 100,
identifier: 1,
},
],
];
assert_eq!(result, expected);
}
}