query/dist_plan/
analyzer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashSet;
use std::sync::Arc;

use datafusion::datasource::DefaultTableSource;
use datafusion::error::Result as DfResult;
use datafusion_common::config::ConfigOptions;
use datafusion_common::tree_node::{Transformed, TreeNode, TreeNodeRewriter};
use datafusion_expr::expr::{Exists, InSubquery};
use datafusion_expr::utils::expr_to_columns;
use datafusion_expr::{col as col_fn, Expr, LogicalPlan, LogicalPlanBuilder, Subquery};
use datafusion_optimizer::analyzer::AnalyzerRule;
use datafusion_optimizer::simplify_expressions::SimplifyExpressions;
use datafusion_optimizer::{OptimizerContext, OptimizerRule};
use substrait::{DFLogicalSubstraitConvertor, SubstraitPlan};
use table::metadata::TableType;
use table::table::adapter::DfTableProviderAdapter;

use crate::dist_plan::commutativity::{
    partial_commutative_transformer, Categorizer, Commutativity,
};
use crate::dist_plan::merge_scan::MergeScanLogicalPlan;
use crate::query_engine::DefaultSerializer;

pub struct DistPlannerAnalyzer;

impl AnalyzerRule for DistPlannerAnalyzer {
    fn name(&self) -> &str {
        "DistPlannerAnalyzer"
    }

    fn analyze(
        &self,
        plan: LogicalPlan,
        _config: &ConfigOptions,
    ) -> datafusion_common::Result<LogicalPlan> {
        // preprocess the input plan
        let optimizer_context = OptimizerContext::new();
        let plan = SimplifyExpressions::new()
            .rewrite(plan, &optimizer_context)?
            .data;

        let plan = plan.transform(&Self::inspect_plan_with_subquery)?;
        let mut rewriter = PlanRewriter::default();
        let result = plan.data.rewrite(&mut rewriter)?.data;

        Ok(result)
    }
}

impl DistPlannerAnalyzer {
    fn inspect_plan_with_subquery(plan: LogicalPlan) -> DfResult<Transformed<LogicalPlan>> {
        let exprs = plan
            .expressions()
            .into_iter()
            .map(|e| e.transform(&Self::transform_subquery).map(|x| x.data))
            .collect::<DfResult<Vec<_>>>()?;

        let inputs = plan.inputs().into_iter().cloned().collect::<Vec<_>>();
        Ok(Transformed::yes(plan.with_new_exprs(exprs, inputs)?))
    }

    fn transform_subquery(expr: Expr) -> DfResult<Transformed<Expr>> {
        match expr {
            Expr::Exists(exists) => Ok(Transformed::yes(Expr::Exists(Exists {
                subquery: Self::handle_subquery(exists.subquery)?,
                negated: exists.negated,
            }))),
            Expr::InSubquery(in_subquery) => Ok(Transformed::yes(Expr::InSubquery(InSubquery {
                expr: in_subquery.expr,
                subquery: Self::handle_subquery(in_subquery.subquery)?,
                negated: in_subquery.negated,
            }))),
            Expr::ScalarSubquery(scalar_subquery) => Ok(Transformed::yes(Expr::ScalarSubquery(
                Self::handle_subquery(scalar_subquery)?,
            ))),

            _ => Ok(Transformed::no(expr)),
        }
    }

    fn handle_subquery(subquery: Subquery) -> DfResult<Subquery> {
        let mut rewriter = PlanRewriter::default();
        let mut rewrote_subquery = subquery
            .subquery
            .as_ref()
            .clone()
            .rewrite(&mut rewriter)?
            .data;
        // Workaround. DF doesn't support the first plan in subquery to be an Extension
        if matches!(rewrote_subquery, LogicalPlan::Extension(_)) {
            let output_schema = rewrote_subquery.schema().clone();
            let project_exprs = output_schema
                .fields()
                .iter()
                .map(|f| col_fn(f.name()))
                .collect::<Vec<_>>();
            rewrote_subquery = LogicalPlanBuilder::from(rewrote_subquery)
                .project(project_exprs)?
                .build()?;
        }

        Ok(Subquery {
            subquery: Arc::new(rewrote_subquery),
            outer_ref_columns: subquery.outer_ref_columns,
        })
    }
}

/// Status of the rewriter to mark if the current pass is expanded
#[derive(Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
enum RewriterStatus {
    #[default]
    Unexpanded,
    Expanded,
}

#[derive(Debug, Default)]
struct PlanRewriter {
    /// Current level in the tree
    level: usize,
    /// Simulated stack for the `rewrite` recursion
    stack: Vec<(LogicalPlan, usize)>,
    /// Stages to be expanded
    stage: Vec<LogicalPlan>,
    status: RewriterStatus,
    /// Partition columns of the table in current pass
    partition_cols: Option<Vec<String>>,
    column_requirements: HashSet<String>,
}

impl PlanRewriter {
    fn get_parent(&self) -> Option<&LogicalPlan> {
        // level starts from 1, it's safe to minus by 1
        self.stack
            .iter()
            .rev()
            .find(|(_, level)| *level == self.level - 1)
            .map(|(node, _)| node)
    }

    /// Return true if should stop and expand. The input plan is the parent node of current node
    fn should_expand(&mut self, plan: &LogicalPlan) -> bool {
        if DFLogicalSubstraitConvertor
            .encode(plan, DefaultSerializer)
            .is_err()
        {
            return true;
        }
        match Categorizer::check_plan(plan, self.partition_cols.clone()) {
            Commutativity::Commutative => {}
            Commutativity::PartialCommutative => {
                if let Some(plan) = partial_commutative_transformer(plan) {
                    self.update_column_requirements(&plan);
                    self.stage.push(plan)
                }
            }
            Commutativity::ConditionalCommutative(transformer) => {
                if let Some(transformer) = transformer
                    && let Some(plan) = transformer(plan)
                {
                    self.update_column_requirements(&plan);
                    self.stage.push(plan)
                }
            }
            Commutativity::TransformedCommutative(transformer) => {
                if let Some(transformer) = transformer
                    && let Some(plan) = transformer(plan)
                {
                    self.update_column_requirements(&plan);
                    self.stage.push(plan)
                }
            }
            Commutativity::NonCommutative
            | Commutativity::Unimplemented
            | Commutativity::Unsupported => {
                return true;
            }
        }

        false
    }

    fn update_column_requirements(&mut self, plan: &LogicalPlan) {
        let mut container = HashSet::new();
        for expr in plan.expressions() {
            // this method won't fail
            let _ = expr_to_columns(&expr, &mut container);
        }

        for col in container {
            self.column_requirements.insert(col.flat_name());
        }
    }

    fn is_expanded(&self) -> bool {
        self.status == RewriterStatus::Expanded
    }

    fn set_expanded(&mut self) {
        self.status = RewriterStatus::Expanded;
    }

    fn set_unexpanded(&mut self) {
        self.status = RewriterStatus::Unexpanded;
    }

    fn maybe_set_partitions(&mut self, plan: &LogicalPlan) {
        if self.partition_cols.is_some() {
            // only need to set once
            return;
        }

        if let LogicalPlan::TableScan(table_scan) = plan {
            if let Some(source) = table_scan
                .source
                .as_any()
                .downcast_ref::<DefaultTableSource>()
            {
                if let Some(provider) = source
                    .table_provider
                    .as_any()
                    .downcast_ref::<DfTableProviderAdapter>()
                {
                    if provider.table().table_type() == TableType::Base {
                        let info = provider.table().table_info();
                        let partition_key_indices = info.meta.partition_key_indices.clone();
                        let schema = info.meta.schema.clone();
                        let partition_cols = partition_key_indices
                            .into_iter()
                            .map(|index| schema.column_name_by_index(index).to_string())
                            .collect::<Vec<String>>();
                        self.partition_cols = Some(partition_cols);
                    }
                }
            }
        }
    }

    /// pop one stack item and reduce the level by 1
    fn pop_stack(&mut self) {
        self.level -= 1;
        self.stack.pop();
    }

    fn expand(&mut self, mut on_node: LogicalPlan) -> DfResult<LogicalPlan> {
        let mut rewriter = EnforceDistRequirementRewriter {
            column_requirements: std::mem::take(&mut self.column_requirements),
        };
        on_node = on_node.rewrite(&mut rewriter)?.data;

        // add merge scan as the new root
        let mut node = MergeScanLogicalPlan::new(on_node, false).into_logical_plan();

        // expand stages
        for new_stage in self.stage.drain(..) {
            node = new_stage.with_new_exprs(new_stage.expressions(), vec![node.clone()])?;
        }
        self.set_expanded();

        Ok(node)
    }
}

/// Implementation of the [`TreeNodeRewriter`] trait which is responsible for rewriting
/// logical plans to enforce various requirement for distributed query.
///
/// Requirements enforced by this rewriter:
/// - Enforce column requirements for `LogicalPlan::Projection` nodes. Makes sure the
///   required columns are available in the sub plan.
struct EnforceDistRequirementRewriter {
    column_requirements: HashSet<String>,
}

impl TreeNodeRewriter for EnforceDistRequirementRewriter {
    type Node = LogicalPlan;

    fn f_down(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
        if let LogicalPlan::Projection(ref projection) = node {
            let mut column_requirements = std::mem::take(&mut self.column_requirements);
            if column_requirements.is_empty() {
                return Ok(Transformed::no(node));
            }

            for expr in &projection.expr {
                column_requirements.remove(&expr.name_for_alias()?);
            }
            if column_requirements.is_empty() {
                return Ok(Transformed::no(node));
            }

            let mut new_exprs = projection.expr.clone();
            for col in &column_requirements {
                new_exprs.push(col_fn(col));
            }
            let new_node =
                node.with_new_exprs(new_exprs, node.inputs().into_iter().cloned().collect())?;
            return Ok(Transformed::yes(new_node));
        }

        Ok(Transformed::no(node))
    }

    fn f_up(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
        Ok(Transformed::no(node))
    }
}

impl TreeNodeRewriter for PlanRewriter {
    type Node = LogicalPlan;

    /// descend
    fn f_down<'a>(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
        self.level += 1;
        self.stack.push((node.clone(), self.level));
        // decendening will clear the stage
        self.stage.clear();
        self.set_unexpanded();
        self.partition_cols = None;
        Ok(Transformed::no(node))
    }

    /// ascend
    ///
    /// Besure to call `pop_stack` before returning
    fn f_up(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
        // only expand once on each ascending
        if self.is_expanded() {
            self.pop_stack();
            return Ok(Transformed::no(node));
        }

        // only expand when the leaf is table scan
        if node.inputs().is_empty() && !matches!(node, LogicalPlan::TableScan(_)) {
            self.set_expanded();
            self.pop_stack();
            return Ok(Transformed::no(node));
        }

        self.maybe_set_partitions(&node);

        let Some(parent) = self.get_parent() else {
            let node = self.expand(node)?;
            self.pop_stack();
            return Ok(Transformed::yes(node));
        };

        // TODO(ruihang): avoid this clone
        if self.should_expand(&parent.clone()) {
            // TODO(ruihang): does this work for nodes with multiple children?;
            let node = self.expand(node)?;
            self.pop_stack();
            return Ok(Transformed::yes(node));
        }

        self.pop_stack();
        Ok(Transformed::no(node))
    }
}

#[cfg(test)]
mod test {
    use std::sync::Arc;

    use datafusion::datasource::DefaultTableSource;
    use datafusion_common::JoinType;
    use datafusion_expr::{avg, col, lit, Expr, LogicalPlanBuilder};
    use table::table::adapter::DfTableProviderAdapter;
    use table::table::numbers::NumbersTable;

    use super::*;

    #[ignore = "Projection is disabled for https://github.com/apache/arrow-datafusion/issues/6489"]
    #[test]
    fn transform_simple_projection_filter() {
        let numbers_table = NumbersTable::table(0);
        let table_source = Arc::new(DefaultTableSource::new(Arc::new(
            DfTableProviderAdapter::new(numbers_table),
        )));

        let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
            .unwrap()
            .filter(col("number").lt(lit(10)))
            .unwrap()
            .project(vec![col("number")])
            .unwrap()
            .distinct()
            .unwrap()
            .build()
            .unwrap();

        let config = ConfigOptions::default();
        let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
        let expected = [
            "Distinct:",
            "  MergeScan [is_placeholder=false]",
            "    Distinct:",
            "      Projection: t.number",
            "        Filter: t.number < Int32(10)",
            "          TableScan: t",
        ]
        .join("\n");
        assert_eq!(expected, format!("{:?}", result));
    }

    #[test]
    fn transform_aggregator() {
        let numbers_table = NumbersTable::table(0);
        let table_source = Arc::new(DefaultTableSource::new(Arc::new(
            DfTableProviderAdapter::new(numbers_table),
        )));

        let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
            .unwrap()
            .aggregate(Vec::<Expr>::new(), vec![avg(col("number"))])
            .unwrap()
            .build()
            .unwrap();

        let config = ConfigOptions::default();
        let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
        let expected = "MergeScan [is_placeholder=false]";
        assert_eq!(expected, format!("{:?}", result));
    }

    #[test]
    fn transform_distinct_order() {
        let numbers_table = NumbersTable::table(0);
        let table_source = Arc::new(DefaultTableSource::new(Arc::new(
            DfTableProviderAdapter::new(numbers_table),
        )));

        let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
            .unwrap()
            .distinct()
            .unwrap()
            .sort(vec![col("number").sort(true, false)])
            .unwrap()
            .build()
            .unwrap();

        let config = ConfigOptions::default();
        let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
        let expected = [
            "Sort: t.number ASC NULLS LAST",
            "  Distinct:",
            "    MergeScan [is_placeholder=false]",
        ]
        .join("\n");
        assert_eq!(expected, format!("{:?}", result));
    }

    #[test]
    fn transform_single_limit() {
        let numbers_table = NumbersTable::table(0);
        let table_source = Arc::new(DefaultTableSource::new(Arc::new(
            DfTableProviderAdapter::new(numbers_table),
        )));

        let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
            .unwrap()
            .limit(0, Some(1))
            .unwrap()
            .build()
            .unwrap();

        let config = ConfigOptions::default();
        let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
        let expected = "MergeScan [is_placeholder=false]";
        assert_eq!(expected, format!("{:?}", result));
    }

    #[test]
    fn transform_unalighed_join_with_alias() {
        let left = NumbersTable::table(0);
        let right = NumbersTable::table(1);
        let left_source = Arc::new(DefaultTableSource::new(Arc::new(
            DfTableProviderAdapter::new(left),
        )));
        let right_source = Arc::new(DefaultTableSource::new(Arc::new(
            DfTableProviderAdapter::new(right),
        )));

        let right_plan = LogicalPlanBuilder::scan_with_filters("t", right_source, None, vec![])
            .unwrap()
            .alias("right")
            .unwrap()
            .build()
            .unwrap();

        let plan = LogicalPlanBuilder::scan_with_filters("t", left_source, None, vec![])
            .unwrap()
            .join_using(right_plan, JoinType::LeftSemi, vec!["number"])
            .unwrap()
            .limit(0, Some(1))
            .unwrap()
            .build()
            .unwrap();

        let config = ConfigOptions::default();
        let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
        let expected = "Limit: skip=0, fetch=1\
            \n  LeftSemi Join: Using t.number = right.number\
            \n    MergeScan [is_placeholder=false]\
            \n    SubqueryAlias: right\
            \n      MergeScan [is_placeholder=false]";
        assert_eq!(expected, format!("{:?}", result));
    }
}