1mod error;
18mod planner;
19
20use std::any::Any;
21use std::collections::HashMap;
22use std::sync::Arc;
23
24use async_trait::async_trait;
25use common_base::Plugins;
26use common_catalog::consts::is_readonly_schema;
27use common_error::ext::BoxedError;
28use common_function::function::FunctionContext;
29use common_function::function_factory::ScalarFunctionFactory;
30use common_query::{Output, OutputData, OutputMeta};
31use common_recordbatch::adapter::RecordBatchStreamAdapter;
32use common_recordbatch::{EmptyRecordBatchStream, SendableRecordBatchStream};
33use common_telemetry::tracing;
34use datafusion::catalog::TableFunction;
35use datafusion::dataframe::DataFrame;
36use datafusion::physical_plan::ExecutionPlan;
37use datafusion::physical_plan::analyze::AnalyzeExec;
38use datafusion::physical_plan::coalesce_partitions::CoalescePartitionsExec;
39use datafusion_common::ResolvedTableReference;
40use datafusion_expr::{
41 AggregateUDF, DmlStatement, LogicalPlan as DfLogicalPlan, LogicalPlan, WriteOp,
42};
43use datatypes::prelude::VectorRef;
44use datatypes::schema::Schema;
45use futures_util::StreamExt;
46use session::context::QueryContextRef;
47use snafu::{OptionExt, ResultExt, ensure};
48use sqlparser::ast::AnalyzeFormat;
49use table::TableRef;
50use table::requests::{DeleteRequest, InsertRequest};
51use tracing::Span;
52
53use crate::analyze::DistAnalyzeExec;
54pub use crate::datafusion::planner::DfContextProviderAdapter;
55use crate::dist_plan::{DistPlannerOptions, MergeScanLogicalPlan};
56use crate::error::{
57 CatalogSnafu, ConvertSchemaSnafu, CreateRecordBatchSnafu, MissingTableMutationHandlerSnafu,
58 MissingTimestampColumnSnafu, QueryExecutionSnafu, Result, TableMutationSnafu,
59 TableNotFoundSnafu, TableReadOnlySnafu, UnsupportedExprSnafu,
60};
61use crate::executor::QueryExecutor;
62use crate::metrics::{OnDone, QUERY_STAGE_ELAPSED};
63use crate::physical_wrapper::PhysicalPlanWrapperRef;
64use crate::planner::{DfLogicalPlanner, LogicalPlanner};
65use crate::query_engine::{DescribeResult, QueryEngineContext, QueryEngineState};
66use crate::{QueryEngine, metrics};
67
68pub const QUERY_PARALLELISM_HINT: &str = "query_parallelism";
71
72pub const QUERY_FALLBACK_HINT: &str = "query_fallback";
74
75pub struct DatafusionQueryEngine {
76 state: Arc<QueryEngineState>,
77 plugins: Plugins,
78}
79
80impl DatafusionQueryEngine {
81 pub fn new(state: Arc<QueryEngineState>, plugins: Plugins) -> Self {
82 Self { state, plugins }
83 }
84
85 #[tracing::instrument(skip_all)]
86 async fn exec_query_plan(
87 &self,
88 plan: LogicalPlan,
89 query_ctx: QueryContextRef,
90 ) -> Result<Output> {
91 let mut ctx = self.engine_context(query_ctx.clone());
92
93 let physical_plan = self.create_physical_plan(&mut ctx, &plan).await?;
95 let optimized_physical_plan = self.optimize_physical_plan(&mut ctx, physical_plan)?;
96
97 let physical_plan = if let Some(wrapper) = self.plugins.get::<PhysicalPlanWrapperRef>() {
98 wrapper.wrap(optimized_physical_plan, query_ctx)
99 } else {
100 optimized_physical_plan
101 };
102
103 Ok(Output::new(
104 OutputData::Stream(self.execute_stream(&ctx, &physical_plan)?),
105 OutputMeta::new_with_plan(physical_plan),
106 ))
107 }
108
109 #[tracing::instrument(skip_all)]
110 async fn exec_dml_statement(
111 &self,
112 dml: DmlStatement,
113 query_ctx: QueryContextRef,
114 ) -> Result<Output> {
115 ensure!(
116 matches!(dml.op, WriteOp::Insert(_) | WriteOp::Delete),
117 UnsupportedExprSnafu {
118 name: format!("DML op {}", dml.op),
119 }
120 );
121
122 let _timer = QUERY_STAGE_ELAPSED
123 .with_label_values(&[dml.op.name()])
124 .start_timer();
125
126 let default_catalog = &query_ctx.current_catalog().to_owned();
127 let default_schema = &query_ctx.current_schema();
128 let table_name = dml.table_name.resolve(default_catalog, default_schema);
129 let table = self.find_table(&table_name, &query_ctx).await?;
130
131 let output = self
132 .exec_query_plan((*dml.input).clone(), query_ctx.clone())
133 .await?;
134 let mut stream = match output.data {
135 OutputData::RecordBatches(batches) => batches.as_stream(),
136 OutputData::Stream(stream) => stream,
137 _ => unreachable!(),
138 };
139
140 let mut affected_rows = 0;
141 let mut insert_cost = 0;
142
143 while let Some(batch) = stream.next().await {
144 let batch = batch.context(CreateRecordBatchSnafu)?;
145 let column_vectors = batch
146 .column_vectors(&table_name.to_string(), table.schema())
147 .map_err(BoxedError::new)
148 .context(QueryExecutionSnafu)?;
149
150 match dml.op {
151 WriteOp::Insert(_) => {
152 let output = self
154 .insert(&table_name, column_vectors, query_ctx.clone())
155 .await?;
156 let (rows, cost) = output.extract_rows_and_cost();
157 affected_rows += rows;
158 insert_cost += cost;
159 }
160 WriteOp::Delete => {
161 affected_rows += self
162 .delete(&table_name, &table, column_vectors, query_ctx.clone())
163 .await?;
164 }
165 _ => unreachable!("guarded by the 'ensure!' at the beginning"),
166 }
167 }
168 Ok(Output::new(
169 OutputData::AffectedRows(affected_rows),
170 OutputMeta::new_with_cost(insert_cost),
171 ))
172 }
173
174 #[tracing::instrument(skip_all)]
175 async fn delete(
176 &self,
177 table_name: &ResolvedTableReference,
178 table: &TableRef,
179 column_vectors: HashMap<String, VectorRef>,
180 query_ctx: QueryContextRef,
181 ) -> Result<usize> {
182 let catalog_name = table_name.catalog.to_string();
183 let schema_name = table_name.schema.to_string();
184 let table_name = table_name.table.to_string();
185 let table_schema = table.schema();
186
187 ensure!(
188 !is_readonly_schema(&schema_name),
189 TableReadOnlySnafu { table: table_name }
190 );
191
192 let ts_column = table_schema
193 .timestamp_column()
194 .map(|x| &x.name)
195 .with_context(|| MissingTimestampColumnSnafu {
196 table_name: table_name.clone(),
197 })?;
198
199 let table_info = table.table_info();
200 let rowkey_columns = table_info
201 .meta
202 .row_key_column_names()
203 .collect::<Vec<&String>>();
204 let column_vectors = column_vectors
205 .into_iter()
206 .filter(|x| &x.0 == ts_column || rowkey_columns.contains(&&x.0))
207 .collect::<HashMap<_, _>>();
208
209 let request = DeleteRequest {
210 catalog_name,
211 schema_name,
212 table_name,
213 key_column_values: column_vectors,
214 };
215
216 self.state
217 .table_mutation_handler()
218 .context(MissingTableMutationHandlerSnafu)?
219 .delete(request, query_ctx)
220 .await
221 .context(TableMutationSnafu)
222 }
223
224 #[tracing::instrument(skip_all)]
225 async fn insert(
226 &self,
227 table_name: &ResolvedTableReference,
228 column_vectors: HashMap<String, VectorRef>,
229 query_ctx: QueryContextRef,
230 ) -> Result<Output> {
231 let catalog_name = table_name.catalog.to_string();
232 let schema_name = table_name.schema.to_string();
233 let table_name = table_name.table.to_string();
234
235 ensure!(
236 !is_readonly_schema(&schema_name),
237 TableReadOnlySnafu { table: table_name }
238 );
239
240 let request = InsertRequest {
241 catalog_name,
242 schema_name,
243 table_name,
244 columns_values: column_vectors,
245 };
246
247 self.state
248 .table_mutation_handler()
249 .context(MissingTableMutationHandlerSnafu)?
250 .insert(request, query_ctx)
251 .await
252 .context(TableMutationSnafu)
253 }
254
255 async fn find_table(
256 &self,
257 table_name: &ResolvedTableReference,
258 query_context: &QueryContextRef,
259 ) -> Result<TableRef> {
260 let catalog_name = table_name.catalog.as_ref();
261 let schema_name = table_name.schema.as_ref();
262 let table_name = table_name.table.as_ref();
263
264 self.state
265 .catalog_manager()
266 .table(catalog_name, schema_name, table_name, Some(query_context))
267 .await
268 .context(CatalogSnafu)?
269 .with_context(|| TableNotFoundSnafu { table: table_name })
270 }
271
272 #[tracing::instrument(skip_all)]
273 async fn create_physical_plan(
274 &self,
275 ctx: &mut QueryEngineContext,
276 logical_plan: &LogicalPlan,
277 ) -> Result<Arc<dyn ExecutionPlan>> {
278 #[derive(Debug)]
282 struct PanicLogger<'a> {
283 input_logical_plan: &'a LogicalPlan,
284 after_analyze: Option<LogicalPlan>,
285 after_optimize: Option<LogicalPlan>,
286 phy_plan: Option<Arc<dyn ExecutionPlan>>,
287 }
288 impl Drop for PanicLogger<'_> {
289 fn drop(&mut self) {
290 if std::thread::panicking() {
291 common_telemetry::error!(
292 "Panic while creating physical plan, input logical plan: {:?}, after analyze: {:?}, after optimize: {:?}, final physical plan: {:?}",
293 self.input_logical_plan,
294 self.after_analyze,
295 self.after_optimize,
296 self.phy_plan
297 );
298 }
299 }
300 }
301
302 let mut logger = PanicLogger {
303 input_logical_plan: logical_plan,
304 after_analyze: None,
305 after_optimize: None,
306 phy_plan: None,
307 };
308
309 let _timer = metrics::CREATE_PHYSICAL_ELAPSED.start_timer();
310 let state = ctx.state();
311
312 common_telemetry::debug!("Create physical plan, input plan: {logical_plan}");
313
314 if matches!(logical_plan, DfLogicalPlan::Explain(_)) {
316 return state
317 .create_physical_plan(logical_plan)
318 .await
319 .map_err(Into::into);
320 }
321
322 let analyzed_plan = state.analyzer().execute_and_check(
324 logical_plan.clone(),
325 state.config_options(),
326 |_, _| {},
327 )?;
328
329 logger.after_analyze = Some(analyzed_plan.clone());
330
331 common_telemetry::debug!("Create physical plan, analyzed plan: {analyzed_plan}");
332
333 let optimized_plan = if let DfLogicalPlan::Extension(ext) = &analyzed_plan
335 && ext.node.name() == MergeScanLogicalPlan::name()
336 {
337 analyzed_plan.clone()
338 } else {
339 state
340 .optimizer()
341 .optimize(analyzed_plan, state, |_, _| {})?
342 };
343
344 common_telemetry::debug!("Create physical plan, optimized plan: {optimized_plan}");
345 logger.after_optimize = Some(optimized_plan.clone());
346
347 let physical_plan = state
348 .query_planner()
349 .create_physical_plan(&optimized_plan, state)
350 .await?;
351
352 logger.phy_plan = Some(physical_plan.clone());
353 drop(logger);
354 Ok(physical_plan)
355 }
356
357 #[tracing::instrument(skip_all)]
358 pub fn optimize(
359 &self,
360 context: &QueryEngineContext,
361 plan: &LogicalPlan,
362 ) -> Result<LogicalPlan> {
363 let _timer = metrics::OPTIMIZE_LOGICAL_ELAPSED.start_timer();
364
365 let optimized_plan = self
367 .state
368 .optimize_by_extension_rules(plan.clone(), context)?;
369
370 let optimized_plan = self.state.session_state().optimize(&optimized_plan)?;
372
373 Ok(optimized_plan)
374 }
375
376 #[tracing::instrument(skip_all)]
377 fn optimize_physical_plan(
378 &self,
379 ctx: &mut QueryEngineContext,
380 plan: Arc<dyn ExecutionPlan>,
381 ) -> Result<Arc<dyn ExecutionPlan>> {
382 let _timer = metrics::OPTIMIZE_PHYSICAL_ELAPSED.start_timer();
383
384 let optimized_plan = if let Some(analyze_plan) = plan.as_any().downcast_ref::<AnalyzeExec>()
391 {
392 let format = if let Some(format) = ctx.query_ctx().explain_format()
393 && format.to_lowercase() == "json"
394 {
395 AnalyzeFormat::JSON
396 } else {
397 AnalyzeFormat::TEXT
398 };
399 ctx.query_ctx().set_explain_verbose(analyze_plan.verbose());
402
403 Arc::new(DistAnalyzeExec::new(
404 analyze_plan.input().clone(),
405 analyze_plan.verbose(),
406 format,
407 ))
408 } else {
416 plan
417 };
425
426 Ok(optimized_plan)
427 }
428}
429
430#[async_trait]
431impl QueryEngine for DatafusionQueryEngine {
432 fn as_any(&self) -> &dyn Any {
433 self
434 }
435
436 fn planner(&self) -> Arc<dyn LogicalPlanner> {
437 Arc::new(DfLogicalPlanner::new(self.state.clone()))
438 }
439
440 fn name(&self) -> &str {
441 "datafusion"
442 }
443
444 async fn describe(
445 &self,
446 plan: LogicalPlan,
447 query_ctx: QueryContextRef,
448 ) -> Result<DescribeResult> {
449 let ctx = self.engine_context(query_ctx);
450 if let Ok(optimised_plan) = self.optimize(&ctx, &plan) {
451 let schema = optimised_plan
452 .schema()
453 .clone()
454 .try_into()
455 .context(ConvertSchemaSnafu)?;
456 Ok(DescribeResult {
457 schema,
458 logical_plan: optimised_plan,
459 })
460 } else {
461 let schema = plan
464 .schema()
465 .clone()
466 .try_into()
467 .context(ConvertSchemaSnafu)?;
468 Ok(DescribeResult {
469 schema,
470 logical_plan: plan,
471 })
472 }
473 }
474
475 async fn execute(&self, plan: LogicalPlan, query_ctx: QueryContextRef) -> Result<Output> {
476 match plan {
477 LogicalPlan::Dml(dml) => self.exec_dml_statement(dml, query_ctx).await,
478 _ => self.exec_query_plan(plan, query_ctx).await,
479 }
480 }
481
482 fn register_aggregate_function(&self, func: AggregateUDF) {
490 self.state.register_aggr_function(func);
491 }
492
493 fn register_scalar_function(&self, func: ScalarFunctionFactory) {
496 self.state.register_scalar_function(func);
497 }
498
499 fn register_table_function(&self, func: Arc<TableFunction>) {
500 self.state.register_table_function(func);
501 }
502
503 fn read_table(&self, table: TableRef) -> Result<DataFrame> {
504 self.state.read_table(table).map_err(Into::into)
505 }
506
507 fn engine_context(&self, query_ctx: QueryContextRef) -> QueryEngineContext {
508 let mut state = self.state.session_state();
509 state.config_mut().set_extension(query_ctx.clone());
510 if let Some(parallelism) = query_ctx.extension(QUERY_PARALLELISM_HINT) {
513 if let Ok(n) = parallelism.parse::<u64>() {
514 if n > 0 {
515 let new_cfg = state.config().clone().with_target_partitions(n as usize);
516 *state.config_mut() = new_cfg;
517 }
518 } else {
519 common_telemetry::warn!(
520 "Failed to parse query_parallelism: {}, using default value",
521 parallelism
522 );
523 }
524 }
525
526 state.config_mut().options_mut().execution.time_zone =
528 Some(query_ctx.timezone().to_string());
529
530 if query_ctx.configuration_parameter().allow_query_fallback() {
533 state
534 .config_mut()
535 .options_mut()
536 .extensions
537 .insert(DistPlannerOptions {
538 allow_query_fallback: true,
539 });
540 } else if let Some(fallback) = query_ctx.extension(QUERY_FALLBACK_HINT) {
541 if fallback.to_lowercase().parse::<bool>().unwrap_or(false) {
544 state
545 .config_mut()
546 .options_mut()
547 .extensions
548 .insert(DistPlannerOptions {
549 allow_query_fallback: true,
550 });
551 }
552 }
553
554 state
555 .config_mut()
556 .options_mut()
557 .extensions
558 .insert(FunctionContext {
559 query_ctx: query_ctx.clone(),
560 state: self.engine_state().function_state(),
561 });
562
563 let config_options = state.config_options().clone();
564 let _ = state
565 .execution_props_mut()
566 .config_options
567 .insert(config_options);
568
569 QueryEngineContext::new(state, query_ctx)
570 }
571
572 fn engine_state(&self) -> &QueryEngineState {
573 &self.state
574 }
575}
576
577impl QueryExecutor for DatafusionQueryEngine {
578 #[tracing::instrument(skip_all)]
579 fn execute_stream(
580 &self,
581 ctx: &QueryEngineContext,
582 plan: &Arc<dyn ExecutionPlan>,
583 ) -> Result<SendableRecordBatchStream> {
584 let explain_verbose = ctx.query_ctx().explain_verbose();
585 let output_partitions = plan.properties().output_partitioning().partition_count();
586 if explain_verbose {
587 common_telemetry::info!("Executing query plan, output_partitions: {output_partitions}");
588 }
589
590 let exec_timer = metrics::EXEC_PLAN_ELAPSED.start_timer();
591 let task_ctx = ctx.build_task_ctx();
592 let span = Span::current();
593
594 match plan.properties().output_partitioning().partition_count() {
595 0 => {
596 let schema = Arc::new(
597 Schema::try_from(plan.schema())
598 .map_err(BoxedError::new)
599 .context(QueryExecutionSnafu)?,
600 );
601 Ok(Box::pin(EmptyRecordBatchStream::new(schema)))
602 }
603 1 => {
604 let df_stream = plan.execute(0, task_ctx)?;
605 let mut stream = RecordBatchStreamAdapter::try_new_with_span(df_stream, span)
606 .context(error::ConvertDfRecordBatchStreamSnafu)
607 .map_err(BoxedError::new)
608 .context(QueryExecutionSnafu)?;
609 stream.set_metrics2(plan.clone());
610 stream.set_explain_verbose(explain_verbose);
611 let stream = OnDone::new(Box::pin(stream), move || {
612 let exec_cost = exec_timer.stop_and_record();
613 if explain_verbose {
614 common_telemetry::info!(
615 "DatafusionQueryEngine execute 1 stream, cost: {:?}s",
616 exec_cost,
617 );
618 }
619 });
620 Ok(Box::pin(stream))
621 }
622 _ => {
623 let merged_plan = CoalescePartitionsExec::new(plan.clone());
625 assert_eq!(
627 1,
628 merged_plan
629 .properties()
630 .output_partitioning()
631 .partition_count()
632 );
633 let df_stream = merged_plan.execute(0, task_ctx)?;
634 let mut stream = RecordBatchStreamAdapter::try_new_with_span(df_stream, span)
635 .context(error::ConvertDfRecordBatchStreamSnafu)
636 .map_err(BoxedError::new)
637 .context(QueryExecutionSnafu)?;
638 stream.set_metrics2(plan.clone());
639 stream.set_explain_verbose(ctx.query_ctx().explain_verbose());
640 let stream = OnDone::new(Box::pin(stream), move || {
641 let exec_cost = exec_timer.stop_and_record();
642 if explain_verbose {
643 common_telemetry::info!(
644 "DatafusionQueryEngine execute {output_partitions} stream, cost: {:?}s",
645 exec_cost
646 );
647 }
648 });
649 Ok(Box::pin(stream))
650 }
651 }
652 }
653}
654
655#[cfg(test)]
656mod tests {
657 use std::sync::Arc;
658
659 use arrow::array::{ArrayRef, UInt64Array};
660 use catalog::RegisterTableRequest;
661 use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, NUMBERS_TABLE_ID};
662 use common_recordbatch::util;
663 use datafusion::prelude::{col, lit};
664 use datatypes::prelude::ConcreteDataType;
665 use datatypes::schema::ColumnSchema;
666 use datatypes::vectors::{Helper, UInt32Vector, VectorRef};
667 use session::context::{QueryContext, QueryContextBuilder};
668 use table::table::numbers::{NUMBERS_TABLE_NAME, NumbersTable};
669
670 use super::*;
671 use crate::options::QueryOptions;
672 use crate::parser::QueryLanguageParser;
673 use crate::query_engine::{QueryEngineFactory, QueryEngineRef};
674
675 async fn create_test_engine() -> QueryEngineRef {
676 let catalog_manager = catalog::memory::new_memory_catalog_manager().unwrap();
677 let req = RegisterTableRequest {
678 catalog: DEFAULT_CATALOG_NAME.to_string(),
679 schema: DEFAULT_SCHEMA_NAME.to_string(),
680 table_name: NUMBERS_TABLE_NAME.to_string(),
681 table_id: NUMBERS_TABLE_ID,
682 table: NumbersTable::table(NUMBERS_TABLE_ID),
683 };
684 catalog_manager.register_table_sync(req).unwrap();
685
686 QueryEngineFactory::new(
687 catalog_manager,
688 None,
689 None,
690 None,
691 None,
692 false,
693 QueryOptions::default(),
694 )
695 .query_engine()
696 }
697
698 #[tokio::test]
699 async fn test_sql_to_plan() {
700 let engine = create_test_engine().await;
701 let sql = "select sum(number) from numbers limit 20";
702
703 let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
704 let plan = engine
705 .planner()
706 .plan(&stmt, QueryContext::arc())
707 .await
708 .unwrap();
709
710 assert_eq!(
711 plan.to_string(),
712 r#"Limit: skip=0, fetch=20
713 Projection: sum(numbers.number)
714 Aggregate: groupBy=[[]], aggr=[[sum(numbers.number)]]
715 TableScan: numbers"#
716 );
717 }
718
719 #[tokio::test]
720 async fn test_execute() {
721 let engine = create_test_engine().await;
722 let sql = "select sum(number) from numbers limit 20";
723
724 let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
725 let plan = engine
726 .planner()
727 .plan(&stmt, QueryContext::arc())
728 .await
729 .unwrap();
730
731 let output = engine.execute(plan, QueryContext::arc()).await.unwrap();
732
733 match output.data {
734 OutputData::Stream(recordbatch) => {
735 let numbers = util::collect(recordbatch).await.unwrap();
736 assert_eq!(1, numbers.len());
737 assert_eq!(numbers[0].num_columns(), 1);
738 assert_eq!(1, numbers[0].schema.num_columns());
739 assert_eq!(
740 "sum(numbers.number)",
741 numbers[0].schema.column_schemas()[0].name
742 );
743
744 let batch = &numbers[0];
745 assert_eq!(1, batch.num_columns());
746 assert_eq!(batch.column(0).len(), 1);
747
748 let expected = Arc::new(UInt64Array::from_iter_values([4950])) as ArrayRef;
749 assert_eq!(batch.column(0), &expected);
750 }
751 _ => unreachable!(),
752 }
753 }
754
755 #[tokio::test]
756 async fn test_read_table() {
757 let engine = create_test_engine().await;
758
759 let engine = engine
760 .as_any()
761 .downcast_ref::<DatafusionQueryEngine>()
762 .unwrap();
763 let query_ctx = Arc::new(QueryContextBuilder::default().build());
764 let table = engine
765 .find_table(
766 &ResolvedTableReference {
767 catalog: "greptime".into(),
768 schema: "public".into(),
769 table: "numbers".into(),
770 },
771 &query_ctx,
772 )
773 .await
774 .unwrap();
775
776 let df = engine.read_table(table).unwrap();
777 let df = df
778 .select_columns(&["number"])
779 .unwrap()
780 .filter(col("number").lt(lit(10)))
781 .unwrap();
782 let batches = df.collect().await.unwrap();
783 assert_eq!(1, batches.len());
784 let batch = &batches[0];
785
786 assert_eq!(1, batch.num_columns());
787 assert_eq!(batch.column(0).len(), 10);
788
789 assert_eq!(
790 Helper::try_into_vector(batch.column(0)).unwrap(),
791 Arc::new(UInt32Vector::from_slice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])) as VectorRef
792 );
793 }
794
795 #[tokio::test]
796 async fn test_describe() {
797 let engine = create_test_engine().await;
798 let sql = "select sum(number) from numbers limit 20";
799
800 let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
801
802 let plan = engine
803 .planner()
804 .plan(&stmt, QueryContext::arc())
805 .await
806 .unwrap();
807
808 let DescribeResult {
809 schema,
810 logical_plan,
811 } = engine.describe(plan, QueryContext::arc()).await.unwrap();
812
813 assert_eq!(
814 schema.column_schemas()[0],
815 ColumnSchema::new(
816 "sum(numbers.number)",
817 ConcreteDataType::uint64_datatype(),
818 true
819 )
820 );
821 assert_eq!(
822 "Limit: skip=0, fetch=20\n Aggregate: groupBy=[[]], aggr=[[sum(CAST(numbers.number AS UInt64))]]\n TableScan: numbers projection=[number]",
823 format!("{}", logical_plan.display_indent())
824 );
825 }
826}