query/
analyze.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Customized `ANALYZE` plan that aware of [MergeScanExec].
//!
//! The code skeleton is taken from `datafusion/physical-plan/src/analyze.rs`

use std::any::Any;
use std::sync::Arc;

use arrow::array::{StringBuilder, UInt32Builder};
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use common_recordbatch::adapter::{MetricCollector, RecordBatchMetrics};
use common_recordbatch::{DfRecordBatch, DfSendableRecordBatchStream};
use datafusion::error::Result as DfResult;
use datafusion::execution::TaskContext;
use datafusion::physical_plan::coalesce_partitions::CoalescePartitionsExec;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter;
use datafusion::physical_plan::{
    accept, DisplayAs, DisplayFormatType, ExecutionPlan, ExecutionPlanProperties, PlanProperties,
};
use datafusion_common::tree_node::{TreeNode, TreeNodeRecursion};
use datafusion_common::{internal_err, DataFusionError};
use datafusion_physical_expr::{Distribution, EquivalenceProperties, Partitioning};
use futures::StreamExt;

use crate::dist_plan::MergeScanExec;

const STAGE: &str = "stage";
const NODE: &str = "node";
const PLAN: &str = "plan";

#[derive(Debug)]
pub struct DistAnalyzeExec {
    input: Arc<dyn ExecutionPlan>,
    schema: SchemaRef,
    properties: PlanProperties,
}

impl DistAnalyzeExec {
    /// Create a new DistAnalyzeExec
    pub fn new(input: Arc<dyn ExecutionPlan>) -> Self {
        let schema = SchemaRef::new(Schema::new(vec![
            Field::new(STAGE, DataType::UInt32, true),
            Field::new(NODE, DataType::UInt32, true),
            Field::new(PLAN, DataType::Utf8, true),
        ]));
        let properties = Self::compute_properties(&input, schema.clone());
        Self {
            input,
            schema,
            properties,
        }
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(input: &Arc<dyn ExecutionPlan>, schema: SchemaRef) -> PlanProperties {
        let eq_properties = EquivalenceProperties::new(schema);
        let output_partitioning = Partitioning::UnknownPartitioning(1);
        let exec_mode = input.execution_mode();
        PlanProperties::new(eq_properties, output_partitioning, exec_mode)
    }
}

impl DisplayAs for DistAnalyzeExec {
    fn fmt_as(&self, t: DisplayFormatType, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "DistAnalyzeExec",)
            }
        }
    }
}

impl ExecutionPlan for DistAnalyzeExec {
    fn name(&self) -> &'static str {
        "DistAnalyzeExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.properties
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    /// AnalyzeExec is handled specially so this value is ignored
    fn required_input_distribution(&self) -> Vec<Distribution> {
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        mut children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> DfResult<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(Self::new(children.pop().unwrap())))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> DfResult<DfSendableRecordBatchStream> {
        if 0 != partition {
            return internal_err!("AnalyzeExec invalid partition. Expected 0, got {partition}");
        }

        // Wrap the input plan using `CoalescePartitionsExec` to poll multiple
        // partitions in parallel
        let coalesce_partition_plan = CoalescePartitionsExec::new(self.input.clone());

        // Create future that computes thefinal output
        let captured_input = self.input.clone();
        let captured_schema = self.schema.clone();

        // Finish the input stream and create the output
        let mut input_stream = coalesce_partition_plan.execute(0, context)?;
        let output = async move {
            let mut total_rows = 0;
            while let Some(batch) = input_stream.next().await.transpose()? {
                total_rows += batch.num_rows();
            }

            create_output_batch(total_rows, captured_input, captured_schema)
        };

        Ok(Box::pin(RecordBatchStreamAdapter::new(
            self.schema.clone(),
            futures::stream::once(output),
        )))
    }
}

/// Build the result [`DfRecordBatch`] of `ANALYZE`
struct AnalyzeOutputBuilder {
    stage_builder: UInt32Builder,
    node_builder: UInt32Builder,
    plan_builder: StringBuilder,
    schema: SchemaRef,
}

impl AnalyzeOutputBuilder {
    fn new(schema: SchemaRef) -> Self {
        Self {
            stage_builder: UInt32Builder::with_capacity(4),
            node_builder: UInt32Builder::with_capacity(4),
            plan_builder: StringBuilder::with_capacity(1, 1024),
            schema,
        }
    }

    fn append_metric(&mut self, stage: u32, node: u32, metric: RecordBatchMetrics) {
        self.stage_builder.append_value(stage);
        self.node_builder.append_value(node);
        self.plan_builder.append_value(metric.to_string());
    }

    fn append_total_rows(&mut self, total_rows: usize) {
        self.stage_builder.append_null();
        self.node_builder.append_null();
        self.plan_builder
            .append_value(format!("Total rows: {}", total_rows));
    }

    fn finish(mut self) -> DfResult<DfRecordBatch> {
        DfRecordBatch::try_new(
            self.schema,
            vec![
                Arc::new(self.stage_builder.finish()),
                Arc::new(self.node_builder.finish()),
                Arc::new(self.plan_builder.finish()),
            ],
        )
        .map_err(DataFusionError::from)
    }
}

/// Creates the output of AnalyzeExec as a RecordBatch
fn create_output_batch(
    total_rows: usize,
    input: Arc<dyn ExecutionPlan>,
    schema: SchemaRef,
) -> DfResult<DfRecordBatch> {
    let mut builder = AnalyzeOutputBuilder::new(schema);

    // Treat the current stage as stage 0. Fetch its metrics
    let mut collector = MetricCollector::default();
    // Safety: metric collector won't return error
    accept(input.as_ref(), &mut collector).unwrap();
    let stage_0_metrics = collector.record_batch_metrics;

    // Append the metrics of the current stage
    builder.append_metric(0, 0, stage_0_metrics);

    // Find merge scan and append its sub_stage_metrics
    input.apply(|plan| {
        if let Some(merge_scan) = plan.as_any().downcast_ref::<MergeScanExec>() {
            let sub_stage_metrics = merge_scan.sub_stage_metrics();
            for (node, metric) in sub_stage_metrics.into_iter().enumerate() {
                builder.append_metric(1, node as _, metric);
            }
            return Ok(TreeNodeRecursion::Stop);
        }
        Ok(TreeNodeRecursion::Continue)
    })?;

    // Write total rows
    builder.append_total_rows(total_rows);

    builder.finish()
}