promql/functions/
holt_winters.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Implementation of [`holt_winters`](https://prometheus.io/docs/prometheus/latest/querying/functions/#holt_winters) in PromQL. Refer to the [original
//! implementation](https://github.com/prometheus/prometheus/blob/8dba9163f1e923ec213f0f4d5c185d9648e387f0/promql/functions.go#L299).

use std::sync::Arc;

use datafusion::arrow::array::Float64Array;
use datafusion::arrow::datatypes::TimeUnit;
use datafusion::common::DataFusionError;
use datafusion::logical_expr::{ScalarUDF, Volatility};
use datafusion::physical_plan::ColumnarValue;
use datafusion_expr::create_udf;
use datatypes::arrow::array::Array;
use datatypes::arrow::datatypes::DataType;

use crate::error;
use crate::functions::extract_array;
use crate::range_array::RangeArray;

/// There are 3 variants of smoothing functions:
/// 1) "Simple exponential smoothing": only the `level` component (the weighted average of the observations) is used to make forecasts.
///    This method is applied for time-series data that does not exhibit trend or seasonality.
/// 2) "Holt's linear method" (a.k.a. "double exponential smoothing"): `level` and `trend` components are used to make forecasts.
///    This method is applied for time-series data that exhibits trend but not seasonality.
/// 3) "Holt-Winter's method" (a.k.a. "triple exponential smoothing"): `level`, `trend`, and `seasonality` are used to make forecasts.
///
/// This method is applied for time-series data that exhibits both trend and seasonality.
///
/// In order to keep the parity with the Prometheus functions we had to follow the same naming ("HoltWinters"), however
/// the "Holt's linear"("double exponential smoothing") suits better and reflects implementation.
/// There's the [discussion](https://github.com/prometheus/prometheus/issues/2458) in the Prometheus Github that dates back
/// to 2017 highlighting the naming/implementation mismatch.
pub struct HoltWinters {
    sf: f64,
    tf: f64,
}

impl HoltWinters {
    fn new(sf: f64, tf: f64) -> Self {
        Self { sf, tf }
    }

    pub const fn name() -> &'static str {
        "prom_holt_winters"
    }

    // time index column and value column
    fn input_type() -> Vec<DataType> {
        vec![
            RangeArray::convert_data_type(DataType::Timestamp(TimeUnit::Millisecond, None)),
            RangeArray::convert_data_type(DataType::Float64),
        ]
    }

    fn return_type() -> DataType {
        DataType::Float64
    }

    pub fn scalar_udf(level: f64, trend: f64) -> ScalarUDF {
        create_udf(
            Self::name(),
            Self::input_type(),
            Self::return_type(),
            Volatility::Immutable,
            Arc::new(move |input: &_| Self::new(level, trend).calc(input)) as _,
        )
    }

    fn calc(&self, input: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
        // construct matrix from input.
        // The third one is level param, the fourth - trend param which are included in fields.
        assert_eq!(input.len(), 2);

        let ts_array = extract_array(&input[0])?;
        let value_array = extract_array(&input[1])?;

        let ts_range: RangeArray = RangeArray::try_new(ts_array.to_data().into())?;
        let value_range: RangeArray = RangeArray::try_new(value_array.to_data().into())?;

        error::ensure(
            ts_range.len() == value_range.len(),
            DataFusionError::Execution(format!(
                "{}: input arrays should have the same length, found {} and {}",
                Self::name(),
                ts_range.len(),
                value_range.len()
            )),
        )?;
        error::ensure(
            ts_range.value_type() == DataType::Timestamp(TimeUnit::Millisecond, None),
            DataFusionError::Execution(format!(
                "{}: expect TimestampMillisecond as time index array's type, found {}",
                Self::name(),
                ts_range.value_type()
            )),
        )?;
        error::ensure(
            value_range.value_type() == DataType::Float64,
            DataFusionError::Execution(format!(
                "{}: expect Float64 as value array's type, found {}",
                Self::name(),
                value_range.value_type()
            )),
        )?;

        // calculation
        let mut result_array = Vec::with_capacity(ts_range.len());
        for index in 0..ts_range.len() {
            let timestamps = ts_range.get(index).unwrap();
            let values = value_range.get(index).unwrap();
            let values = values
                .as_any()
                .downcast_ref::<Float64Array>()
                .unwrap()
                .values();
            error::ensure(
                timestamps.len() == values.len(),
                DataFusionError::Execution(format!(
                    "{}: input arrays should have the same length, found {} and {}",
                    Self::name(),
                    timestamps.len(),
                    values.len()
                )),
            )?;
            result_array.push(holt_winter_impl(values, self.sf, self.tf));
        }

        let result = ColumnarValue::Array(Arc::new(Float64Array::from_iter(result_array)));
        Ok(result)
    }
}

fn calc_trend_value(i: usize, tf: f64, s0: f64, s1: f64, b: f64) -> f64 {
    if i == 0 {
        return b;
    }
    let x = tf * (s1 - s0);
    let y = (1.0 - tf) * b;
    x + y
}

/// Refer to <https://github.com/prometheus/prometheus/blob/main/promql/functions.go#L299>
fn holt_winter_impl(values: &[f64], sf: f64, tf: f64) -> Option<f64> {
    if sf.is_nan() || tf.is_nan() || values.is_empty() {
        return Some(f64::NAN);
    }
    if sf < 0.0 || tf < 0.0 {
        return Some(f64::NEG_INFINITY);
    }
    if sf > 1.0 || tf > 1.0 {
        return Some(f64::INFINITY);
    }

    let l = values.len();
    if l <= 2 {
        // Can't do the smoothing operation with less than two points.
        return Some(f64::NAN);
    }

    let values = values.to_vec();

    let mut s0 = 0.0;
    let mut s1 = values[0];
    let mut b = values[1] - values[0];

    for (i, value) in values.iter().enumerate().skip(1) {
        // Scale the raw value against the smoothing factor.
        let x = sf * value;
        // Scale the last smoothed value with the trend at this point.
        b = calc_trend_value(i - 1, tf, s0, s1, b);
        let y = (1.0 - sf) * (s1 + b);
        s0 = s1;
        s1 = x + y;
    }
    Some(s1)
}

#[cfg(test)]
mod tests {
    use datafusion::arrow::array::{Float64Array, TimestampMillisecondArray};

    use super::*;
    use crate::functions::test_util::simple_range_udf_runner;

    #[test]
    fn test_holt_winter_impl_empty() {
        let sf = 0.5;
        let tf = 0.5;
        let values = &[];
        assert!(holt_winter_impl(values, sf, tf).unwrap().is_nan());

        let values = &[1.0, 2.0];
        assert!(holt_winter_impl(values, sf, tf).unwrap().is_nan());
    }

    #[test]
    fn test_holt_winter_impl_nan() {
        let values = &[1.0, 2.0, 3.0];
        let sf = f64::NAN;
        let tf = 0.5;
        assert!(holt_winter_impl(values, sf, tf).unwrap().is_nan());

        let values = &[1.0, 2.0, 3.0];
        let sf = 0.5;
        let tf = f64::NAN;
        assert!(holt_winter_impl(values, sf, tf).unwrap().is_nan());
    }

    #[test]
    fn test_holt_winter_impl_validation_rules() {
        let values = &[1.0, 2.0, 3.0];
        let sf = -0.5;
        let tf = 0.5;
        assert_eq!(holt_winter_impl(values, sf, tf).unwrap(), f64::NEG_INFINITY);

        let values = &[1.0, 2.0, 3.0];
        let sf = 0.5;
        let tf = -0.5;
        assert_eq!(holt_winter_impl(values, sf, tf).unwrap(), f64::NEG_INFINITY);

        let values = &[1.0, 2.0, 3.0];
        let sf = 1.5;
        let tf = 0.5;
        assert_eq!(holt_winter_impl(values, sf, tf).unwrap(), f64::INFINITY);

        let values = &[1.0, 2.0, 3.0];
        let sf = 0.5;
        let tf = 1.5;
        assert_eq!(holt_winter_impl(values, sf, tf).unwrap(), f64::INFINITY);
    }

    #[test]
    fn test_holt_winter_impl() {
        let sf = 0.5;
        let tf = 0.1;
        let values = &[1.0, 2.0, 3.0, 4.0, 5.0];
        assert_eq!(holt_winter_impl(values, sf, tf), Some(5.0));
        let values = &[50.0, 52.0, 95.0, 59.0, 52.0, 45.0, 38.0, 10.0, 47.0, 40.0];
        assert_eq!(holt_winter_impl(values, sf, tf), Some(38.18119566835938));
    }

    #[test]
    fn test_prom_holt_winter_monotonic() {
        let ranges = [(0, 5)];
        let ts_array = Arc::new(TimestampMillisecondArray::from_iter(
            [1000i64, 3000, 5000, 7000, 9000, 11000, 13000, 15000, 17000]
                .into_iter()
                .map(Some),
        ));
        let values_array = Arc::new(Float64Array::from_iter([1.0, 2.0, 3.0, 4.0, 5.0]));
        let ts_range_array = RangeArray::from_ranges(ts_array, ranges).unwrap();
        let value_range_array = RangeArray::from_ranges(values_array, ranges).unwrap();
        simple_range_udf_runner(
            HoltWinters::scalar_udf(0.5, 0.1),
            ts_range_array,
            value_range_array,
            vec![Some(5.0)],
        );
    }

    #[test]
    fn test_prom_holt_winter_non_monotonic() {
        let ranges = [(0, 10)];
        let ts_array = Arc::new(TimestampMillisecondArray::from_iter(
            [
                1000i64, 3000, 5000, 7000, 9000, 11000, 13000, 15000, 17000, 19000,
            ]
            .into_iter()
            .map(Some),
        ));
        let values_array = Arc::new(Float64Array::from_iter([
            50.0, 52.0, 95.0, 59.0, 52.0, 45.0, 38.0, 10.0, 47.0, 40.0,
        ]));
        let ts_range_array = RangeArray::from_ranges(ts_array, ranges).unwrap();
        let value_range_array = RangeArray::from_ranges(values_array, ranges).unwrap();
        simple_range_udf_runner(
            HoltWinters::scalar_udf(0.5, 0.1),
            ts_range_array,
            value_range_array,
            vec![Some(38.18119566835938)],
        );
    }

    #[test]
    fn test_promql_trends() {
        let ranges = vec![(0, 801)];

        let trends = vec![
            // positive trends https://github.com/prometheus/prometheus/blob/8dba9163f1e923ec213f0f4d5c185d9648e387f0/promql/testdata/functions.test#L475
            ("0+10x1000 100+30x1000", 8000.0),
            ("0+20x1000 200+30x1000", 16000.0),
            ("0+30x1000 300+80x1000", 24000.0),
            ("0+40x2000", 32000.0),
            // negative trends https://github.com/prometheus/prometheus/blob/8dba9163f1e923ec213f0f4d5c185d9648e387f0/promql/testdata/functions.test#L488
            ("8000-10x1000", 0.0),
            ("0-20x1000", -16000.0),
            ("0+30x1000 300-80x1000", 24000.0),
            ("0-40x1000 0+40x1000", -32000.0),
        ];

        for (query, expected) in trends {
            let (ts_range_array, value_range_array) =
                create_ts_and_value_range_arrays(query, ranges.clone());
            simple_range_udf_runner(
                HoltWinters::scalar_udf(0.01, 0.1),
                ts_range_array,
                value_range_array,
                vec![Some(expected)],
            );
        }
    }

    fn create_ts_and_value_range_arrays(
        input: &str,
        ranges: Vec<(u32, u32)>,
    ) -> (RangeArray, RangeArray) {
        let promql_range = create_test_range_from_promql_series(input);
        let ts_array = Arc::new(TimestampMillisecondArray::from_iter(
            (0..(promql_range.len() as i64)).map(Some),
        ));
        let values_array = Arc::new(Float64Array::from_iter(promql_range));
        let ts_range_array = RangeArray::from_ranges(ts_array, ranges.clone()).unwrap();
        let value_range_array = RangeArray::from_ranges(values_array, ranges).unwrap();
        (ts_range_array, value_range_array)
    }

    /// Converts a prometheus functions test series into a vector of f64 element with respect to resets and trend direction   
    /// The input example: "0+10x1000 100+30x1000"
    fn create_test_range_from_promql_series(input: &str) -> Vec<f64> {
        input.split(' ').map(parse_promql_series_entry).fold(
            Vec::new(),
            |mut acc, (start, end, step, operation)| {
                if operation.eq("+") {
                    let iter = (start..=((step * end) + start))
                        .step_by(step as usize)
                        .map(|x| x as f64);
                    acc.extend(iter);
                } else {
                    let iter = (((-step * end) + start)..=start)
                        .rev()
                        .step_by(step as usize)
                        .map(|x| x as f64);
                    acc.extend(iter);
                };
                acc
            },
        )
    }

    /// Converts a prometheus functions test series entry into separate parts to create a range with a step
    /// The input example: "100+30x1000"
    fn parse_promql_series_entry(input: &str) -> (i32, i32, i32, &str) {
        let mut parts = input.split('x');
        let start_operation_step = parts.next().unwrap();
        let operation = start_operation_step
            .split(char::is_numeric)
            .find(|&x| !x.is_empty())
            .unwrap();
        let start_step = start_operation_step
            .split(operation)
            .map(|s| s.parse::<i32>().unwrap())
            .collect::<Vec<_>>();
        let start = *start_step.first().unwrap();
        let step = *start_step.last().unwrap();
        let end = parts.next().unwrap().parse::<i32>().unwrap();
        (start, end, step, operation)
    }
}