pipeline/manager/
table.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::Arc;
use std::time::Duration;

use api::v1::value::ValueData;
use api::v1::{
    ColumnDataType, ColumnDef, ColumnSchema as PbColumnSchema, Row, RowInsertRequest,
    RowInsertRequests, Rows, SemanticType,
};
use common_query::OutputData;
use common_recordbatch::util as record_util;
use common_telemetry::{debug, info};
use common_time::timestamp::{TimeUnit, Timestamp};
use datafusion::logical_expr::col;
use datafusion_common::{TableReference, ToDFSchema};
use datafusion_expr::{DmlStatement, LogicalPlan};
use datatypes::prelude::ScalarVector;
use datatypes::timestamp::TimestampNanosecond;
use datatypes::vectors::{StringVector, TimestampNanosecondVector, Vector};
use moka::sync::Cache;
use operator::insert::InserterRef;
use operator::statement::StatementExecutorRef;
use query::dataframe::DataFrame;
use query::QueryEngineRef;
use session::context::{QueryContextBuilder, QueryContextRef};
use snafu::{ensure, OptionExt, ResultExt};
use table::metadata::TableInfo;
use table::TableRef;

use crate::error::{
    BuildDfLogicalPlanSnafu, CastTypeSnafu, CollectRecordsSnafu, CompilePipelineSnafu,
    DataFrameSnafu, ExecuteInternalStatementSnafu, InsertPipelineSnafu,
    InvalidPipelineVersionSnafu, PipelineNotFoundSnafu, Result,
};
use crate::etl::transform::GreptimeTransformer;
use crate::etl::{parse, Content, Pipeline};
use crate::manager::{PipelineInfo, PipelineVersion};
use crate::util::{generate_pipeline_cache_key, prepare_dataframe_conditions};

pub(crate) const PIPELINE_TABLE_NAME: &str = "pipelines";
pub(crate) const PIPELINE_TABLE_PIPELINE_NAME_COLUMN_NAME: &str = "name";
pub(crate) const PIPELINE_TABLE_PIPELINE_SCHEMA_COLUMN_NAME: &str = "schema";
const PIPELINE_TABLE_PIPELINE_CONTENT_TYPE_COLUMN_NAME: &str = "content_type";
const PIPELINE_TABLE_PIPELINE_CONTENT_COLUMN_NAME: &str = "pipeline";
pub(crate) const PIPELINE_TABLE_CREATED_AT_COLUMN_NAME: &str = "created_at";

/// Pipeline table cache size.
const PIPELINES_CACHE_SIZE: u64 = 10000;
/// Pipeline table cache time to live.
const PIPELINES_CACHE_TTL: Duration = Duration::from_secs(10);

/// PipelineTable is a table that stores the pipeline schema and content.
/// Every catalog has its own pipeline table.
pub struct PipelineTable {
    inserter: InserterRef,
    statement_executor: StatementExecutorRef,
    table: TableRef,
    query_engine: QueryEngineRef,
    pipelines: Cache<String, Arc<Pipeline<GreptimeTransformer>>>,
}

impl PipelineTable {
    /// Create a new PipelineTable.
    pub fn new(
        inserter: InserterRef,
        statement_executor: StatementExecutorRef,
        table: TableRef,
        query_engine: QueryEngineRef,
    ) -> Self {
        Self {
            inserter,
            statement_executor,
            table,
            query_engine,
            pipelines: Cache::builder()
                .max_capacity(PIPELINES_CACHE_SIZE)
                .time_to_live(PIPELINES_CACHE_TTL)
                .build(),
        }
    }

    /// Build the schema for the pipeline table.
    /// Returns the (time index, primary keys, column) definitions.
    pub fn build_pipeline_schema() -> (String, Vec<String>, Vec<ColumnDef>) {
        (
            PIPELINE_TABLE_CREATED_AT_COLUMN_NAME.to_string(),
            vec![
                PIPELINE_TABLE_PIPELINE_SCHEMA_COLUMN_NAME.to_string(),
                PIPELINE_TABLE_PIPELINE_NAME_COLUMN_NAME.to_string(),
                PIPELINE_TABLE_PIPELINE_CONTENT_TYPE_COLUMN_NAME.to_string(),
            ],
            vec![
                ColumnDef {
                    name: PIPELINE_TABLE_PIPELINE_NAME_COLUMN_NAME.to_string(),
                    data_type: ColumnDataType::String as i32,
                    is_nullable: false,
                    default_constraint: vec![],
                    semantic_type: SemanticType::Tag as i32,
                    comment: "".to_string(),
                    datatype_extension: None,
                    options: None,
                },
                ColumnDef {
                    name: PIPELINE_TABLE_PIPELINE_SCHEMA_COLUMN_NAME.to_string(),
                    data_type: ColumnDataType::String as i32,
                    is_nullable: false,
                    default_constraint: vec![],
                    semantic_type: SemanticType::Tag as i32,
                    comment: "".to_string(),
                    datatype_extension: None,
                    options: None,
                },
                ColumnDef {
                    name: PIPELINE_TABLE_PIPELINE_CONTENT_TYPE_COLUMN_NAME.to_string(),
                    data_type: ColumnDataType::String as i32,
                    is_nullable: false,
                    default_constraint: vec![],
                    semantic_type: SemanticType::Tag as i32,
                    comment: "".to_string(),
                    datatype_extension: None,
                    options: None,
                },
                ColumnDef {
                    name: PIPELINE_TABLE_PIPELINE_CONTENT_COLUMN_NAME.to_string(),
                    data_type: ColumnDataType::String as i32,
                    is_nullable: false,
                    default_constraint: vec![],
                    semantic_type: SemanticType::Field as i32,
                    comment: "".to_string(),
                    datatype_extension: None,
                    options: None,
                },
                ColumnDef {
                    name: PIPELINE_TABLE_CREATED_AT_COLUMN_NAME.to_string(),
                    data_type: ColumnDataType::TimestampNanosecond as i32,
                    is_nullable: false,
                    default_constraint: vec![],
                    semantic_type: SemanticType::Timestamp as i32,
                    comment: "".to_string(),
                    datatype_extension: None,
                    options: None,
                },
            ],
        )
    }

    /// Build the column schemas for inserting a row into the pipeline table.
    fn build_insert_column_schemas() -> Vec<PbColumnSchema> {
        vec![
            PbColumnSchema {
                column_name: PIPELINE_TABLE_PIPELINE_NAME_COLUMN_NAME.to_string(),
                datatype: ColumnDataType::String.into(),
                semantic_type: SemanticType::Tag.into(),
                ..Default::default()
            },
            PbColumnSchema {
                column_name: PIPELINE_TABLE_PIPELINE_SCHEMA_COLUMN_NAME.to_string(),
                datatype: ColumnDataType::String.into(),
                semantic_type: SemanticType::Tag.into(),
                ..Default::default()
            },
            PbColumnSchema {
                column_name: PIPELINE_TABLE_PIPELINE_CONTENT_TYPE_COLUMN_NAME.to_string(),
                datatype: ColumnDataType::String.into(),
                semantic_type: SemanticType::Tag.into(),
                ..Default::default()
            },
            PbColumnSchema {
                column_name: PIPELINE_TABLE_PIPELINE_CONTENT_COLUMN_NAME.to_string(),
                datatype: ColumnDataType::String.into(),
                semantic_type: SemanticType::Field.into(),
                ..Default::default()
            },
            PbColumnSchema {
                column_name: PIPELINE_TABLE_CREATED_AT_COLUMN_NAME.to_string(),
                datatype: ColumnDataType::TimestampNanosecond.into(),
                semantic_type: SemanticType::Timestamp.into(),
                ..Default::default()
            },
        ]
    }

    fn query_ctx(table_info: &TableInfo) -> QueryContextRef {
        QueryContextBuilder::default()
            .current_catalog(table_info.catalog_name.to_string())
            .current_schema(table_info.schema_name.to_string())
            .build()
            .into()
    }

    /// Compile a pipeline from a string.
    pub fn compile_pipeline(pipeline: &str) -> Result<Pipeline<GreptimeTransformer>> {
        let yaml_content = Content::Yaml(pipeline);
        parse::<GreptimeTransformer>(&yaml_content).context(CompilePipelineSnafu)
    }

    /// Insert a pipeline into the pipeline table.
    async fn insert_pipeline_to_pipeline_table(
        &self,
        schema: &str,
        name: &str,
        content_type: &str,
        pipeline: &str,
    ) -> Result<Timestamp> {
        let now = Timestamp::current_time(TimeUnit::Nanosecond);

        let table_info = self.table.table_info();

        let insert = RowInsertRequest {
            table_name: PIPELINE_TABLE_NAME.to_string(),
            rows: Some(Rows {
                schema: Self::build_insert_column_schemas(),
                rows: vec![Row {
                    values: vec![
                        ValueData::StringValue(name.to_string()).into(),
                        ValueData::StringValue(schema.to_string()).into(),
                        ValueData::StringValue(content_type.to_string()).into(),
                        ValueData::StringValue(pipeline.to_string()).into(),
                        ValueData::TimestampNanosecondValue(now.value()).into(),
                    ],
                }],
            }),
        };

        let requests = RowInsertRequests {
            inserts: vec![insert],
        };

        let output = self
            .inserter
            .handle_row_inserts(
                requests,
                Self::query_ctx(&table_info),
                &self.statement_executor,
            )
            .await
            .context(InsertPipelineSnafu)?;

        info!(
            "Insert pipeline success, name: {:?}, table: {:?}, output: {:?}",
            name,
            table_info.full_table_name(),
            output
        );

        Ok(now)
    }

    /// Get a pipeline by name.
    /// If the pipeline is not in the cache, it will be get from table and compiled and inserted into the cache.
    pub async fn get_pipeline(
        &self,
        schema: &str,
        name: &str,
        version: PipelineVersion,
    ) -> Result<Arc<Pipeline<GreptimeTransformer>>> {
        if let Some(pipeline) = self
            .pipelines
            .get(&generate_pipeline_cache_key(schema, name, version))
        {
            return Ok(pipeline);
        }

        let pipeline = self
            .find_pipeline(schema, name, version)
            .await?
            .context(PipelineNotFoundSnafu { name, version })?;
        let compiled_pipeline = Arc::new(Self::compile_pipeline(&pipeline.0)?);

        self.pipelines.insert(
            generate_pipeline_cache_key(schema, name, version),
            compiled_pipeline.clone(),
        );
        Ok(compiled_pipeline)
    }

    /// Insert a pipeline into the pipeline table and compile it.
    /// The compiled pipeline will be inserted into the cache.
    pub async fn insert_and_compile(
        &self,
        schema: &str,
        name: &str,
        content_type: &str,
        pipeline: &str,
    ) -> Result<PipelineInfo> {
        let compiled_pipeline = Arc::new(Self::compile_pipeline(pipeline)?);
        // we will use the version in the future
        let version = self
            .insert_pipeline_to_pipeline_table(schema, name, content_type, pipeline)
            .await?;

        {
            self.pipelines.insert(
                generate_pipeline_cache_key(schema, name, None),
                compiled_pipeline.clone(),
            );
            self.pipelines.insert(
                generate_pipeline_cache_key(schema, name, Some(TimestampNanosecond(version))),
                compiled_pipeline.clone(),
            );
        }

        Ok((version, compiled_pipeline))
    }

    pub async fn delete_pipeline(
        &self,
        schema: &str,
        name: &str,
        version: PipelineVersion,
    ) -> Result<Option<()>> {
        // 0. version is ensured at the http api level not None
        ensure!(
            version.is_some(),
            InvalidPipelineVersionSnafu { version: "None" }
        );

        // 1. check pipeline exist in catalog
        let pipeline = self.find_pipeline(schema, name, version).await?;
        if pipeline.is_none() {
            return Ok(None);
        }

        // 2. prepare dataframe
        let dataframe = self
            .query_engine
            .read_table(self.table.clone())
            .context(DataFrameSnafu)?;
        let DataFrame::DataFusion(dataframe) = dataframe;

        let dataframe = dataframe
            .filter(prepare_dataframe_conditions(schema, name, version))
            .context(BuildDfLogicalPlanSnafu)?;

        // 3. prepare dml stmt
        let table_info = self.table.table_info();
        let table_name = TableReference::full(
            table_info.catalog_name.clone(),
            table_info.schema_name.clone(),
            table_info.name.clone(),
        );

        let df_schema = Arc::new(
            table_info
                .meta
                .schema
                .arrow_schema()
                .clone()
                .to_dfschema()
                .context(BuildDfLogicalPlanSnafu)?,
        );

        // create dml stmt
        let stmt = DmlStatement::new(
            table_name,
            df_schema,
            datafusion_expr::WriteOp::Delete,
            Arc::new(dataframe.into_parts().1),
        );

        let plan = LogicalPlan::Dml(stmt);

        // 4. execute dml stmt
        let output = self
            .query_engine
            .execute(plan, Self::query_ctx(&table_info))
            .await
            .context(ExecuteInternalStatementSnafu)?;

        info!(
            "Delete pipeline success, name: {:?}, version: {:?}, table: {:?}, output: {:?}",
            name,
            version,
            table_info.full_table_name(),
            output
        );

        // remove cache with version and latest
        self.pipelines
            .remove(&generate_pipeline_cache_key(schema, name, version));
        self.pipelines
            .remove(&generate_pipeline_cache_key(schema, name, None));

        Ok(Some(()))
    }

    async fn find_pipeline(
        &self,
        schema: &str,
        name: &str,
        version: PipelineVersion,
    ) -> Result<Option<(String, TimestampNanosecond)>> {
        // 1. prepare dataframe
        let dataframe = self
            .query_engine
            .read_table(self.table.clone())
            .context(DataFrameSnafu)?;
        let DataFrame::DataFusion(dataframe) = dataframe;

        let dataframe = dataframe
            .filter(prepare_dataframe_conditions(schema, name, version))
            .context(BuildDfLogicalPlanSnafu)?
            .select_columns(&[
                PIPELINE_TABLE_PIPELINE_CONTENT_COLUMN_NAME,
                PIPELINE_TABLE_CREATED_AT_COLUMN_NAME,
            ])
            .context(BuildDfLogicalPlanSnafu)?
            .sort(vec![
                col(PIPELINE_TABLE_CREATED_AT_COLUMN_NAME).sort(false, true)
            ])
            .context(BuildDfLogicalPlanSnafu)?
            .limit(0, Some(1))
            .context(BuildDfLogicalPlanSnafu)?;

        let plan = dataframe.into_parts().1;

        let table_info = self.table.table_info();

        debug!("find_pipeline_by_name: plan: {:?}", plan);

        // 2. execute plan
        let output = self
            .query_engine
            .execute(plan, Self::query_ctx(&table_info))
            .await
            .context(ExecuteInternalStatementSnafu)?;
        let stream = match output.data {
            OutputData::Stream(stream) => stream,
            OutputData::RecordBatches(record_batches) => record_batches.as_stream(),
            _ => unreachable!(),
        };

        // 3. construct result
        let records = record_util::collect(stream)
            .await
            .context(CollectRecordsSnafu)?;

        if records.is_empty() {
            return Ok(None);
        }

        // limit 1
        ensure!(
            records.len() == 1 && records[0].num_columns() == 2,
            PipelineNotFoundSnafu { name, version }
        );

        let pipeline_content_column = records[0].column(0);
        let pipeline_content = pipeline_content_column
            .as_any()
            .downcast_ref::<StringVector>()
            .with_context(|| CastTypeSnafu {
                msg: format!(
                    "can't downcast {:?} array into string vector",
                    pipeline_content_column.data_type()
                ),
            })?;

        let pipeline_created_at_column = records[0].column(1);
        let pipeline_created_at = pipeline_created_at_column
            .as_any()
            .downcast_ref::<TimestampNanosecondVector>()
            .with_context(|| CastTypeSnafu {
                msg: format!(
                    "can't downcast {:?} array into scalar vector",
                    pipeline_created_at_column.data_type()
                ),
            })?;

        debug!(
            "find_pipeline_by_name: pipeline_content: {:?}, pipeline_created_at: {:?}",
            pipeline_content, pipeline_created_at
        );

        ensure!(
            pipeline_content.len() == 1,
            PipelineNotFoundSnafu { name, version }
        );

        // Safety: asserted above
        Ok(Some((
            pipeline_content.get_data(0).unwrap().to_string(),
            pipeline_created_at.get_data(0).unwrap(),
        )))
    }
}