pipeline/etl/transform/transformer/
greptime.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

pub mod coerce;

use std::collections::HashSet;
use std::sync::Arc;

use ahash::{HashMap, HashMapExt};
use api::helper::proto_value_type;
use api::v1::column_data_type_extension::TypeExt;
use api::v1::value::ValueData;
use api::v1::{ColumnDataType, ColumnDataTypeExtension, JsonTypeExtension, SemanticType};
use coerce::{coerce_columns, coerce_value};
use greptime_proto::v1::{ColumnSchema, Row, Rows, Value as GreptimeValue};
use itertools::Itertools;
use serde_json::Number;

use crate::error::{
    IdentifyPipelineColumnTypeMismatchSnafu, ReachedMaxNestedLevelsSnafu, Result,
    TransformColumnNameMustBeUniqueSnafu, TransformEmptySnafu,
    TransformMultipleTimestampIndexSnafu, TransformTimestampIndexCountSnafu,
    UnsupportedNumberTypeSnafu,
};
use crate::etl::field::{Field, Fields};
use crate::etl::transform::index::Index;
use crate::etl::transform::{Transform, Transforms};
use crate::etl::value::{Timestamp, Value};
use crate::etl::PipelineMap;
use crate::IdentityTimeIndex;

const DEFAULT_GREPTIME_TIMESTAMP_COLUMN: &str = "greptime_timestamp";
const DEFAULT_MAX_NESTED_LEVELS_FOR_JSON_FLATTENING: usize = 10;

/// fields not in the columns will be discarded
/// to prevent automatic column creation in GreptimeDB
#[derive(Debug, Clone)]
pub struct GreptimeTransformer {
    transforms: Transforms,
    schema: Vec<ColumnSchema>,
}

/// Parameters that can be used to configure the greptime pipelines.
#[derive(Debug, Clone, Default)]
pub struct GreptimePipelineParams {
    /// The options for configuring the greptime pipelines.
    pub options: HashMap<String, String>,
}

impl GreptimePipelineParams {
    /// Create a `GreptimePipelineParams` from params string which is from the http header with key `x-greptime-pipeline-params`
    /// The params is in the format of `key1=value1&key2=value2`,for example:
    /// x-greptime-pipeline-params: flatten_json_object=true
    pub fn from_params(params: Option<&str>) -> Self {
        let options = params
            .unwrap_or_default()
            .split('&')
            .filter_map(|s| s.split_once('='))
            .map(|(k, v)| (k.to_string(), v.to_string()))
            .collect::<HashMap<String, String>>();

        Self { options }
    }

    /// Whether to flatten the JSON object.
    pub fn flatten_json_object(&self) -> bool {
        self.options
            .get("flatten_json_object")
            .map(|v| v == "true")
            .unwrap_or(false)
    }
}

impl GreptimeTransformer {
    /// Add a default timestamp column to the transforms
    fn add_greptime_timestamp_column(transforms: &mut Transforms) {
        let type_ = Value::Timestamp(Timestamp::Nanosecond(0));
        let default = None;

        let transform = Transform {
            fields: Fields::one(Field::new(
                DEFAULT_GREPTIME_TIMESTAMP_COLUMN.to_string(),
                None,
            )),
            type_,
            default,
            index: Some(Index::Time),
            on_failure: Some(crate::etl::transform::OnFailure::Default),
            tag: false,
        };
        transforms.push(transform);
    }

    /// Generate the schema for the GreptimeTransformer
    fn init_schemas(transforms: &Transforms) -> Result<Vec<ColumnSchema>> {
        let mut schema = vec![];
        for transform in transforms.iter() {
            schema.extend(coerce_columns(transform)?);
        }
        Ok(schema)
    }
}

impl GreptimeTransformer {
    pub fn new(mut transforms: Transforms) -> Result<Self> {
        if transforms.is_empty() {
            return TransformEmptySnafu.fail();
        }

        let mut column_names_set = HashSet::new();
        let mut timestamp_columns = vec![];

        for transform in transforms.iter() {
            let target_fields_set = transform
                .fields
                .iter()
                .map(|f| f.target_or_input_field())
                .collect::<HashSet<_>>();

            let intersections: Vec<_> = column_names_set.intersection(&target_fields_set).collect();
            if !intersections.is_empty() {
                let duplicates = intersections.iter().join(",");
                return TransformColumnNameMustBeUniqueSnafu { duplicates }.fail();
            }

            column_names_set.extend(target_fields_set);

            if let Some(idx) = transform.index {
                if idx == Index::Time {
                    match transform.fields.len() {
                        //Safety unwrap is fine here because we have checked the length of real_fields
                        1 => {
                            timestamp_columns.push(transform.fields.first().unwrap().input_field())
                        }
                        _ => {
                            return TransformMultipleTimestampIndexSnafu {
                                columns: transform
                                    .fields
                                    .iter()
                                    .map(|x| x.input_field())
                                    .join(", "),
                            }
                            .fail();
                        }
                    }
                }
            }
        }

        match timestamp_columns.len() {
            0 => {
                GreptimeTransformer::add_greptime_timestamp_column(&mut transforms);

                let schema = GreptimeTransformer::init_schemas(&transforms)?;
                Ok(GreptimeTransformer { transforms, schema })
            }
            1 => {
                let schema = GreptimeTransformer::init_schemas(&transforms)?;
                Ok(GreptimeTransformer { transforms, schema })
            }
            _ => {
                let columns: String = timestamp_columns.iter().map(|s| s.to_string()).join(", ");
                let count = timestamp_columns.len();
                TransformTimestampIndexCountSnafu { count, columns }.fail()
            }
        }
    }

    pub fn transform_mut(&self, val: &mut PipelineMap) -> Result<Row> {
        let mut values = vec![GreptimeValue { value_data: None }; self.schema.len()];
        let mut output_index = 0;
        for transform in self.transforms.iter() {
            for field in transform.fields.iter() {
                let index = field.input_field();
                match val.get(index) {
                    Some(v) => {
                        let value_data = coerce_value(v, transform)?;
                        // every transform fields has only one output field
                        values[output_index] = GreptimeValue { value_data };
                    }
                    None => {
                        let value_data = match transform.on_failure {
                            Some(crate::etl::transform::OnFailure::Default) => {
                                match transform.get_default() {
                                    Some(default) => coerce_value(default, transform)?,
                                    None => match transform.get_default_value_when_data_is_none() {
                                        Some(default) => coerce_value(&default, transform)?,
                                        None => None,
                                    },
                                }
                            }
                            Some(crate::etl::transform::OnFailure::Ignore) => None,
                            None => None,
                        };
                        values[output_index] = GreptimeValue { value_data };
                    }
                }
                output_index += 1;
            }
        }
        Ok(Row { values })
    }

    pub fn transforms(&self) -> &Transforms {
        &self.transforms
    }

    pub fn schemas(&self) -> &Vec<greptime_proto::v1::ColumnSchema> {
        &self.schema
    }

    pub fn transforms_mut(&mut self) -> &mut Transforms {
        &mut self.transforms
    }
}

/// This is used to record the current state schema information and a sequential cache of field names.
/// As you traverse the user input JSON, this will change.
/// It will record a superset of all user input schemas.
#[derive(Debug, Default)]
pub struct SchemaInfo {
    /// schema info
    pub schema: Vec<ColumnSchema>,
    /// index of the column name
    pub index: HashMap<String, usize>,
}

impl SchemaInfo {
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            schema: Vec::with_capacity(capacity),
            index: HashMap::with_capacity(capacity),
        }
    }
}

fn resolve_schema(
    index: Option<usize>,
    value_data: ValueData,
    column_schema: ColumnSchema,
    row: &mut Vec<GreptimeValue>,
    schema_info: &mut SchemaInfo,
) -> Result<()> {
    if let Some(index) = index {
        let api_value = GreptimeValue {
            value_data: Some(value_data),
        };
        // Safety unwrap is fine here because api_value is always valid
        let value_column_data_type = proto_value_type(&api_value).unwrap();
        // Safety unwrap is fine here because index is always valid
        let schema_column_data_type = schema_info.schema.get(index).unwrap().datatype();
        if value_column_data_type != schema_column_data_type {
            IdentifyPipelineColumnTypeMismatchSnafu {
                column: column_schema.column_name,
                expected: schema_column_data_type.as_str_name(),
                actual: value_column_data_type.as_str_name(),
            }
            .fail()
        } else {
            row[index] = api_value;
            Ok(())
        }
    } else {
        let key = column_schema.column_name.clone();
        schema_info.schema.push(column_schema);
        schema_info.index.insert(key, schema_info.schema.len() - 1);
        let api_value = GreptimeValue {
            value_data: Some(value_data),
        };
        row.push(api_value);
        Ok(())
    }
}

fn resolve_number_schema(
    n: Number,
    column_name: String,
    index: Option<usize>,
    row: &mut Vec<GreptimeValue>,
    schema_info: &mut SchemaInfo,
) -> Result<()> {
    let (value, datatype, semantic_type) = if n.is_i64() {
        (
            ValueData::I64Value(n.as_i64().unwrap()),
            ColumnDataType::Int64 as i32,
            SemanticType::Field as i32,
        )
    } else if n.is_u64() {
        (
            ValueData::U64Value(n.as_u64().unwrap()),
            ColumnDataType::Uint64 as i32,
            SemanticType::Field as i32,
        )
    } else if n.is_f64() {
        (
            ValueData::F64Value(n.as_f64().unwrap()),
            ColumnDataType::Float64 as i32,
            SemanticType::Field as i32,
        )
    } else {
        return UnsupportedNumberTypeSnafu { value: n }.fail();
    };
    resolve_schema(
        index,
        value,
        ColumnSchema {
            column_name,
            datatype,
            semantic_type,
            datatype_extension: None,
            options: None,
        },
        row,
        schema_info,
    )
}

fn values_to_row(
    schema_info: &mut SchemaInfo,
    values: PipelineMap,
    custom_ts: Option<&IdentityTimeIndex>,
) -> Result<Row> {
    let mut row: Vec<GreptimeValue> = Vec::with_capacity(schema_info.schema.len());

    // set time index value
    let value_data = match custom_ts {
        Some(ts) => {
            let ts_field = values.get(ts.get_column_name());
            Some(ts.get_timestamp(ts_field)?)
        }
        None => Some(ValueData::TimestampNanosecondValue(
            chrono::Utc::now().timestamp_nanos_opt().unwrap_or_default(),
        )),
    };

    row.push(GreptimeValue { value_data });

    for _ in 1..schema_info.schema.len() {
        row.push(GreptimeValue { value_data: None });
    }

    for (column_name, value) in values {
        // skip ts column
        let ts_column = custom_ts
            .as_ref()
            .map_or(DEFAULT_GREPTIME_TIMESTAMP_COLUMN, |ts| ts.get_column_name());
        if column_name == ts_column {
            continue;
        }

        let index = schema_info.index.get(&column_name).copied();
        resolve_value(index, value, column_name, &mut row, schema_info)?;
    }
    Ok(Row { values: row })
}

fn resolve_value(
    index: Option<usize>,
    value: Value,
    column_name: String,
    row: &mut Vec<GreptimeValue>,
    schema_info: &mut SchemaInfo,
) -> Result<()> {
    let mut resolve_simple_type =
        |value_data: ValueData, column_name: String, data_type: ColumnDataType| {
            resolve_schema(
                index,
                value_data,
                ColumnSchema {
                    column_name,
                    datatype: data_type as i32,
                    semantic_type: SemanticType::Field as i32,
                    datatype_extension: None,
                    options: None,
                },
                row,
                schema_info,
            )
        };

    match value {
        Value::Null => {}

        Value::Int8(_) | Value::Int16(_) | Value::Int32(_) | Value::Int64(_) => {
            // safe unwrap after type matched
            let v = value.as_i64().unwrap();
            resolve_simple_type(ValueData::I64Value(v), column_name, ColumnDataType::Int64)?;
        }

        Value::Uint8(_) | Value::Uint16(_) | Value::Uint32(_) | Value::Uint64(_) => {
            // safe unwrap after type matched
            let v = value.as_u64().unwrap();
            resolve_simple_type(ValueData::U64Value(v), column_name, ColumnDataType::Uint64)?;
        }

        Value::Float32(_) | Value::Float64(_) => {
            // safe unwrap after type matched
            let v = value.as_f64().unwrap();
            resolve_simple_type(ValueData::F64Value(v), column_name, ColumnDataType::Float64)?;
        }

        Value::Boolean(v) => {
            resolve_simple_type(
                ValueData::BoolValue(v),
                column_name,
                ColumnDataType::Boolean,
            )?;
        }

        Value::String(v) => {
            resolve_simple_type(
                ValueData::StringValue(v),
                column_name,
                ColumnDataType::String,
            )?;
        }

        Value::Timestamp(Timestamp::Nanosecond(ns)) => {
            resolve_simple_type(
                ValueData::TimestampNanosecondValue(ns),
                column_name,
                ColumnDataType::TimestampNanosecond,
            )?;
        }

        Value::Timestamp(Timestamp::Microsecond(us)) => {
            resolve_simple_type(
                ValueData::TimestampMicrosecondValue(us),
                column_name,
                ColumnDataType::TimestampMicrosecond,
            )?;
        }

        Value::Timestamp(Timestamp::Millisecond(ms)) => {
            resolve_simple_type(
                ValueData::TimestampMillisecondValue(ms),
                column_name,
                ColumnDataType::TimestampMillisecond,
            )?;
        }

        Value::Timestamp(Timestamp::Second(s)) => {
            resolve_simple_type(
                ValueData::TimestampSecondValue(s),
                column_name,
                ColumnDataType::TimestampSecond,
            )?;
        }

        Value::Array(_) | Value::Map(_) => {
            let data: jsonb::Value = value.into();
            resolve_schema(
                index,
                ValueData::BinaryValue(data.to_vec()),
                ColumnSchema {
                    column_name,
                    datatype: ColumnDataType::Binary as i32,
                    semantic_type: SemanticType::Field as i32,
                    datatype_extension: Some(ColumnDataTypeExtension {
                        type_ext: Some(TypeExt::JsonType(JsonTypeExtension::JsonBinary.into())),
                    }),
                    options: None,
                },
                row,
                schema_info,
            )?;
        }
    }
    Ok(())
}

fn identity_pipeline_inner(
    array: Vec<PipelineMap>,
    custom_ts: Option<&IdentityTimeIndex>,
) -> Result<(SchemaInfo, Vec<Row>)> {
    let mut rows = Vec::with_capacity(array.len());
    let mut schema_info = SchemaInfo::default();

    // set time index column schema first
    schema_info.schema.push(ColumnSchema {
        column_name: custom_ts
            .map(|ts| ts.get_column_name().clone())
            .unwrap_or_else(|| DEFAULT_GREPTIME_TIMESTAMP_COLUMN.to_string()),
        datatype: custom_ts
            .map(|c| c.get_datatype())
            .unwrap_or(ColumnDataType::TimestampNanosecond) as i32,
        semantic_type: SemanticType::Timestamp as i32,
        datatype_extension: None,
        options: None,
    });

    for values in array {
        let row = values_to_row(&mut schema_info, values, custom_ts)?;
        rows.push(row);
    }

    let column_count = schema_info.schema.len();
    for row in rows.iter_mut() {
        let diff = column_count - row.values.len();
        for _ in 0..diff {
            row.values.push(GreptimeValue { value_data: None });
        }
    }

    Ok((schema_info, rows))
}

/// Identity pipeline for Greptime
/// This pipeline will convert the input JSON array to Greptime Rows
/// params table is used to set the semantic type of the row key column to Tag
/// 1. The pipeline will add a default timestamp column to the schema
/// 2. The pipeline not resolve NULL value
/// 3. The pipeline assumes that the json format is fixed
/// 4. The pipeline will return an error if the same column datatype is mismatched
/// 5. The pipeline will analyze the schema of each json record and merge them to get the final schema.
pub fn identity_pipeline(
    array: Vec<PipelineMap>,
    table: Option<Arc<table::Table>>,
    params: &GreptimePipelineParams,
    custom_ts: Option<&IdentityTimeIndex>,
) -> Result<Rows> {
    let input = if params.flatten_json_object() {
        array
            .into_iter()
            .map(|item| flatten_object(item, DEFAULT_MAX_NESTED_LEVELS_FOR_JSON_FLATTENING))
            .collect::<Result<Vec<PipelineMap>>>()?
    } else {
        array
    };

    identity_pipeline_inner(input, custom_ts).map(|(mut schema, rows)| {
        if let Some(table) = table {
            let table_info = table.table_info();
            for tag_name in table_info.meta.row_key_column_names() {
                if let Some(index) = schema.index.get(tag_name) {
                    schema.schema[*index].semantic_type = SemanticType::Tag as i32;
                }
            }
        }
        Rows {
            schema: schema.schema,
            rows,
        }
    })
}

/// Consumes the JSON object and consumes it into a single-level object.
///
/// The `max_nested_levels` parameter is used to limit the nested levels of the JSON object.
/// The error will be returned if the nested levels is greater than the `max_nested_levels`.
pub fn flatten_object(object: PipelineMap, max_nested_levels: usize) -> Result<PipelineMap> {
    let mut flattened = PipelineMap::new();

    if !object.is_empty() {
        // it will use recursion to flatten the object.
        do_flatten_object(&mut flattened, None, object, 1, max_nested_levels)?;
    }

    Ok(flattened)
}

fn do_flatten_object(
    dest: &mut PipelineMap,
    base: Option<&str>,
    object: PipelineMap,
    current_level: usize,
    max_nested_levels: usize,
) -> Result<()> {
    // For safety, we do not allow the depth to be greater than the max_object_depth.
    if current_level > max_nested_levels {
        return ReachedMaxNestedLevelsSnafu { max_nested_levels }.fail();
    }

    for (key, value) in object {
        let new_key = base.map_or_else(|| key.clone(), |base_key| format!("{base_key}.{key}"));

        match value {
            Value::Map(object) => {
                do_flatten_object(
                    dest,
                    Some(&new_key),
                    object.values,
                    current_level + 1,
                    max_nested_levels,
                )?;
            }
            // For other types, we will directly insert them into as JSON type.
            _ => {
                dest.insert(new_key, value);
            }
        }
    }

    Ok(())
}

#[cfg(test)]
mod tests {
    use api::v1::SemanticType;

    use super::*;
    use crate::etl::{json_array_to_map, json_to_map};
    use crate::identity_pipeline;

    #[test]
    fn test_identify_pipeline() {
        {
            let array = vec![
                serde_json::json!({
                    "woshinull": null,
                    "name": "Alice",
                    "age": 20,
                    "is_student": true,
                    "score": 99.5,
                    "hobbies": "reading",
                    "address": "Beijing",
                }),
                serde_json::json!({
                    "name": "Bob",
                    "age": 21,
                    "is_student": false,
                    "score": "88.5",
                    "hobbies": "swimming",
                    "address": "Shanghai",
                    "gaga": "gaga"
                }),
            ];
            let array = json_array_to_map(array).unwrap();
            let rows = identity_pipeline(array, None, &GreptimePipelineParams::default(), None);
            assert!(rows.is_err());
            assert_eq!(
                rows.err().unwrap().to_string(),
                "Column datatype mismatch. For column: score, expected datatype: FLOAT64, actual datatype: STRING".to_string(),
            );
        }
        {
            let array = vec![
                serde_json::json!({
                    "woshinull": null,
                    "name": "Alice",
                    "age": 20,
                    "is_student": true,
                    "score": 99.5,
                    "hobbies": "reading",
                    "address": "Beijing",
                }),
                serde_json::json!({
                    "name": "Bob",
                    "age": 21,
                    "is_student": false,
                    "score": 88,
                    "hobbies": "swimming",
                    "address": "Shanghai",
                    "gaga": "gaga"
                }),
            ];
            let rows = identity_pipeline(
                json_array_to_map(array).unwrap(),
                None,
                &GreptimePipelineParams::default(),
                None,
            );
            assert!(rows.is_err());
            assert_eq!(
                rows.err().unwrap().to_string(),
                "Column datatype mismatch. For column: score, expected datatype: FLOAT64, actual datatype: INT64".to_string(),
            );
        }
        {
            let array = vec![
                serde_json::json!({
                    "woshinull": null,
                    "name": "Alice",
                    "age": 20,
                    "is_student": true,
                    "score": 99.5,
                    "hobbies": "reading",
                    "address": "Beijing",
                }),
                serde_json::json!({
                    "name": "Bob",
                    "age": 21,
                    "is_student": false,
                    "score": 88.5,
                    "hobbies": "swimming",
                    "address": "Shanghai",
                    "gaga": "gaga"
                }),
            ];
            let rows = identity_pipeline(
                json_array_to_map(array).unwrap(),
                None,
                &GreptimePipelineParams::default(),
                None,
            );
            assert!(rows.is_ok());
            let rows = rows.unwrap();
            assert_eq!(rows.schema.len(), 8);
            assert_eq!(rows.rows.len(), 2);
            assert_eq!(8, rows.rows[0].values.len());
            assert_eq!(8, rows.rows[1].values.len());
        }
        {
            let array = vec![
                serde_json::json!({
                    "woshinull": null,
                    "name": "Alice",
                    "age": 20,
                    "is_student": true,
                    "score": 99.5,
                    "hobbies": "reading",
                    "address": "Beijing",
                }),
                serde_json::json!({
                    "name": "Bob",
                    "age": 21,
                    "is_student": false,
                    "score": 88.5,
                    "hobbies": "swimming",
                    "address": "Shanghai",
                    "gaga": "gaga"
                }),
            ];
            let tag_column_names = ["name".to_string(), "address".to_string()];

            let rows = identity_pipeline_inner(json_array_to_map(array).unwrap(), None).map(
                |(mut schema, rows)| {
                    for name in tag_column_names {
                        if let Some(index) = schema.index.get(&name) {
                            schema.schema[*index].semantic_type = SemanticType::Tag as i32;
                        }
                    }
                    Rows {
                        schema: schema.schema,
                        rows,
                    }
                },
            );

            assert!(rows.is_ok());
            let rows = rows.unwrap();
            assert_eq!(rows.schema.len(), 8);
            assert_eq!(rows.rows.len(), 2);
            assert_eq!(8, rows.rows[0].values.len());
            assert_eq!(8, rows.rows[1].values.len());
            assert_eq!(
                rows.schema
                    .iter()
                    .find(|x| x.column_name == "name")
                    .unwrap()
                    .semantic_type,
                SemanticType::Tag as i32
            );
            assert_eq!(
                rows.schema
                    .iter()
                    .find(|x| x.column_name == "address")
                    .unwrap()
                    .semantic_type,
                SemanticType::Tag as i32
            );
            assert_eq!(
                rows.schema
                    .iter()
                    .filter(|x| x.semantic_type == SemanticType::Tag as i32)
                    .count(),
                2
            );
        }
    }

    #[test]
    fn test_flatten() {
        let test_cases = vec![
            // Basic case.
            (
                serde_json::json!(
                    {
                        "a": {
                            "b": {
                                "c": [1, 2, 3]
                            }
                        },
                        "d": [
                            "foo",
                            "bar"
                        ],
                        "e": {
                            "f": [7, 8, 9],
                            "g": {
                                "h": 123,
                                "i": "hello",
                                "j": {
                                    "k": true
                                }
                            }
                        }
                    }
                ),
                10,
                Some(serde_json::json!(
                    {
                        "a.b.c": [1,2,3],
                        "d": ["foo","bar"],
                        "e.f": [7,8,9],
                        "e.g.h": 123,
                        "e.g.i": "hello",
                        "e.g.j.k": true
                    }
                )),
            ),
            // Test the case where the object has more than 3 nested levels.
            (
                serde_json::json!(
                    {
                        "a": {
                            "b": {
                                "c": {
                                    "d": [1, 2, 3]
                                }
                            }
                        },
                        "e": [
                            "foo",
                            "bar"
                        ]
                    }
                ),
                3,
                None,
            ),
        ];

        for (input, max_depth, expected) in test_cases {
            let input = json_to_map(input).unwrap();
            let expected = expected.map(|e| json_to_map(e).unwrap());

            let flattened_object = flatten_object(input, max_depth).ok();
            assert_eq!(flattened_object, expected);
        }
    }

    #[test]
    fn test_greptime_pipeline_params() {
        let params = Some("flatten_json_object=true");
        let pipeline_params = GreptimePipelineParams::from_params(params);
        assert!(pipeline_params.flatten_json_object());

        let params = None;
        let pipeline_params = GreptimePipelineParams::from_params(params);
        assert!(!pipeline_params.flatten_json_object());
    }
}