operator/statement/
copy_table_to.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashMap;
use std::sync::Arc;

use client::OutputData;
use common_base::readable_size::ReadableSize;
use common_datasource::file_format::csv::stream_to_csv;
use common_datasource::file_format::json::stream_to_json;
use common_datasource::file_format::parquet::stream_to_parquet;
use common_datasource::file_format::Format;
use common_datasource::object_store::{build_backend, parse_url};
use common_datasource::util::find_dir_and_filename;
use common_query::Output;
use common_recordbatch::adapter::DfRecordBatchStreamAdapter;
use common_recordbatch::SendableRecordBatchStream;
use common_telemetry::{debug, tracing};
use datafusion::datasource::DefaultTableSource;
use datafusion_common::TableReference as DfTableReference;
use datafusion_expr::LogicalPlanBuilder;
use object_store::ObjectStore;
use session::context::QueryContextRef;
use snafu::{OptionExt, ResultExt};
use table::requests::CopyTableRequest;
use table::table::adapter::DfTableProviderAdapter;
use table::table_reference::TableReference;

use crate::error::{self, BuildDfLogicalPlanSnafu, ExecLogicalPlanSnafu, Result};
use crate::statement::StatementExecutor;

// The buffer size should be greater than 5MB (minimum multipart upload size).
/// Buffer size to flush data to object stores.
const WRITE_BUFFER_THRESHOLD: ReadableSize = ReadableSize::mb(8);

/// Default number of concurrent write, it only works on object store backend(e.g., S3).
const WRITE_CONCURRENCY: usize = 8;

impl StatementExecutor {
    async fn stream_to_file(
        &self,
        stream: SendableRecordBatchStream,
        format: &Format,
        object_store: ObjectStore,
        path: &str,
    ) -> Result<usize> {
        let threshold = WRITE_BUFFER_THRESHOLD.as_bytes() as usize;

        match format {
            Format::Csv(_) => stream_to_csv(
                Box::pin(DfRecordBatchStreamAdapter::new(stream)),
                object_store,
                path,
                threshold,
                WRITE_CONCURRENCY,
            )
            .await
            .context(error::WriteStreamToFileSnafu { path }),
            Format::Json(_) => stream_to_json(
                Box::pin(DfRecordBatchStreamAdapter::new(stream)),
                object_store,
                path,
                threshold,
                WRITE_CONCURRENCY,
            )
            .await
            .context(error::WriteStreamToFileSnafu { path }),
            Format::Parquet(_) => {
                let schema = stream.schema();
                stream_to_parquet(
                    Box::pin(DfRecordBatchStreamAdapter::new(stream)),
                    schema,
                    object_store,
                    path,
                    WRITE_CONCURRENCY,
                )
                .await
                .context(error::WriteStreamToFileSnafu { path })
            }
            _ => error::UnsupportedFormatSnafu { format: *format }.fail(),
        }
    }

    #[tracing::instrument(skip_all)]
    pub(crate) async fn copy_table_to(
        &self,
        req: CopyTableRequest,
        query_ctx: QueryContextRef,
    ) -> Result<usize> {
        let table_ref = TableReference::full(&req.catalog_name, &req.schema_name, &req.table_name);
        let table = self.get_table(&table_ref).await?;
        let table_id = table.table_info().table_id();
        let format = Format::try_from(&req.with).context(error::ParseFileFormatSnafu)?;

        let df_table_ref = DfTableReference::from(table_ref);

        let filters = table
            .schema()
            .timestamp_column()
            .and_then(|c| {
                common_query::logical_plan::build_filter_from_timestamp(
                    &c.name,
                    req.timestamp_range.as_ref(),
                )
            })
            .into_iter()
            .collect::<Vec<_>>();

        let table_provider = Arc::new(DfTableProviderAdapter::new(table));
        let table_source = Arc::new(DefaultTableSource::new(table_provider));

        let mut builder = LogicalPlanBuilder::scan_with_filters(
            df_table_ref,
            table_source,
            None,
            filters.clone(),
        )
        .context(BuildDfLogicalPlanSnafu)?;
        for f in filters {
            builder = builder.filter(f).context(BuildDfLogicalPlanSnafu)?;
        }
        let plan = builder.build().context(BuildDfLogicalPlanSnafu)?;

        let output = self
            .query_engine
            .execute(plan, query_ctx)
            .await
            .context(ExecLogicalPlanSnafu)?;

        let CopyTableRequest {
            location,
            connection,
            ..
        } = &req;

        debug!("Copy table: {table_id} to location: {location}");
        self.copy_to_file(&format, output, location, connection)
            .await
    }

    pub(crate) async fn copy_to_file(
        &self,
        format: &Format,
        output: Output,
        location: &str,
        connection: &HashMap<String, String>,
    ) -> Result<usize> {
        let stream = match output.data {
            OutputData::Stream(stream) => stream,
            OutputData::RecordBatches(record_batches) => record_batches.as_stream(),
            _ => unreachable!(),
        };

        let (_schema, _host, path) = parse_url(location).context(error::ParseUrlSnafu)?;
        let (_, filename) = find_dir_and_filename(&path);
        let filename = filename.context(error::UnexpectedSnafu {
            violated: format!("Expected filename, path: {path}"),
        })?;
        let object_store = build_backend(location, connection).context(error::BuildBackendSnafu)?;
        self.stream_to_file(stream, format, object_store, &filename)
            .await
    }
}