1use std::future::Future;
18use std::mem;
19use std::pin::Pin;
20use std::sync::Arc;
21use std::sync::atomic::{AtomicUsize, Ordering};
22use std::task::{Context, Poll};
23use std::time::Instant;
24
25use common_telemetry::debug;
26use common_time::Timestamp;
27use datatypes::arrow::array::{
28 ArrayRef, TimestampMicrosecondArray, TimestampMillisecondArray, TimestampNanosecondArray,
29 TimestampSecondArray,
30};
31use datatypes::arrow::compute::{max, min};
32use datatypes::arrow::datatypes::{DataType, SchemaRef, TimeUnit};
33use datatypes::arrow::record_batch::RecordBatch;
34use object_store::{FuturesAsyncWriter, ObjectStore};
35use parquet::arrow::AsyncArrowWriter;
36use parquet::basic::{Compression, Encoding, ZstdLevel};
37use parquet::file::metadata::KeyValue;
38use parquet::file::properties::{WriterProperties, WriterPropertiesBuilder};
39use parquet::schema::types::ColumnPath;
40use smallvec::smallvec;
41use snafu::ResultExt;
42use store_api::metadata::RegionMetadataRef;
43use store_api::storage::consts::{OP_TYPE_COLUMN_NAME, SEQUENCE_COLUMN_NAME};
44use store_api::storage::{FileId, SequenceNumber};
45use tokio::io::AsyncWrite;
46use tokio_util::compat::{Compat, FuturesAsyncWriteCompatExt};
47
48use crate::access_layer::{FilePathProvider, Metrics, SstInfoArray, TempFileCleaner};
49use crate::config::{IndexBuildMode, IndexConfig};
50use crate::error::{
51 InvalidMetadataSnafu, OpenDalSnafu, Result, UnexpectedSnafu, WriteParquetSnafu,
52};
53use crate::read::{Batch, FlatSource, Source};
54use crate::sst::file::RegionFileId;
55use crate::sst::index::{IndexOutput, Indexer, IndexerBuilder};
56use crate::sst::parquet::flat_format::{FlatWriteFormat, time_index_column_index};
57use crate::sst::parquet::format::PrimaryKeyWriteFormat;
58use crate::sst::parquet::helper::parse_parquet_metadata;
59use crate::sst::parquet::{PARQUET_METADATA_KEY, SstInfo, WriteOptions};
60use crate::sst::{
61 DEFAULT_WRITE_BUFFER_SIZE, DEFAULT_WRITE_CONCURRENCY, FlatSchemaOptions, SeriesEstimator,
62};
63
64pub struct ParquetWriter<'a, F: WriterFactory, I: IndexerBuilder, P: FilePathProvider> {
66 path_provider: P,
68 writer: Option<AsyncArrowWriter<SizeAwareWriter<F::Writer>>>,
69 current_file: FileId,
71 writer_factory: F,
72 metadata: RegionMetadataRef,
74 index_config: IndexConfig,
76 indexer_builder: I,
78 current_indexer: Option<Indexer>,
80 bytes_written: Arc<AtomicUsize>,
81 file_cleaner: Option<TempFileCleaner>,
83 metrics: &'a mut Metrics,
85}
86
87pub trait WriterFactory {
88 type Writer: AsyncWrite + Send + Unpin;
89 fn create(&mut self, file_path: &str) -> impl Future<Output = Result<Self::Writer>>;
90}
91
92pub struct ObjectStoreWriterFactory {
93 object_store: ObjectStore,
94}
95
96impl WriterFactory for ObjectStoreWriterFactory {
97 type Writer = Compat<FuturesAsyncWriter>;
98
99 async fn create(&mut self, file_path: &str) -> Result<Self::Writer> {
100 self.object_store
101 .writer_with(file_path)
102 .chunk(DEFAULT_WRITE_BUFFER_SIZE.as_bytes() as usize)
103 .concurrent(DEFAULT_WRITE_CONCURRENCY)
104 .await
105 .map(|v| v.into_futures_async_write().compat_write())
106 .context(OpenDalSnafu)
107 }
108}
109
110impl<'a, I, P> ParquetWriter<'a, ObjectStoreWriterFactory, I, P>
111where
112 P: FilePathProvider,
113 I: IndexerBuilder,
114{
115 pub async fn new_with_object_store(
116 object_store: ObjectStore,
117 metadata: RegionMetadataRef,
118 index_config: IndexConfig,
119 indexer_builder: I,
120 path_provider: P,
121 metrics: &'a mut Metrics,
122 ) -> ParquetWriter<'a, ObjectStoreWriterFactory, I, P> {
123 ParquetWriter::new(
124 ObjectStoreWriterFactory { object_store },
125 metadata,
126 index_config,
127 indexer_builder,
128 path_provider,
129 metrics,
130 )
131 .await
132 }
133
134 pub(crate) fn with_file_cleaner(mut self, cleaner: TempFileCleaner) -> Self {
135 self.file_cleaner = Some(cleaner);
136 self
137 }
138}
139
140impl<'a, F, I, P> ParquetWriter<'a, F, I, P>
141where
142 F: WriterFactory,
143 I: IndexerBuilder,
144 P: FilePathProvider,
145{
146 pub async fn new(
148 factory: F,
149 metadata: RegionMetadataRef,
150 index_config: IndexConfig,
151 indexer_builder: I,
152 path_provider: P,
153 metrics: &'a mut Metrics,
154 ) -> ParquetWriter<'a, F, I, P> {
155 let init_file = FileId::random();
156 let indexer = indexer_builder.build(init_file).await;
157
158 ParquetWriter {
159 path_provider,
160 writer: None,
161 current_file: init_file,
162 writer_factory: factory,
163 metadata,
164 index_config,
165 indexer_builder,
166 current_indexer: Some(indexer),
167 bytes_written: Arc::new(AtomicUsize::new(0)),
168 file_cleaner: None,
169 metrics,
170 }
171 }
172
173 async fn finish_current_file(
175 &mut self,
176 ssts: &mut SstInfoArray,
177 stats: &mut SourceStats,
178 ) -> Result<()> {
179 if let Some(mut current_writer) = mem::take(&mut self.writer) {
181 let mut stats = mem::take(stats);
182 assert!(stats.num_rows > 0);
184
185 debug!(
186 "Finishing current file {}, file size: {}, num rows: {}",
187 self.current_file,
188 self.bytes_written.load(Ordering::Relaxed),
189 stats.num_rows
190 );
191
192 let mut index_output = IndexOutput::default();
195 match self.index_config.build_mode {
196 IndexBuildMode::Sync => {
197 index_output = self.current_indexer.as_mut().unwrap().finish().await;
198 }
199 IndexBuildMode::Async => {
200 debug!(
201 "Index for file {} will be built asynchronously later",
202 self.current_file
203 );
204 }
205 }
206 current_writer.flush().await.context(WriteParquetSnafu)?;
207
208 let file_meta = current_writer.close().await.context(WriteParquetSnafu)?;
209 let file_size = self.bytes_written.load(Ordering::Relaxed) as u64;
210
211 let time_range = stats.time_range.unwrap();
213
214 let parquet_metadata = parse_parquet_metadata(file_meta)?;
216 let num_series = stats.series_estimator.finish();
217 ssts.push(SstInfo {
218 file_id: self.current_file,
219 time_range,
220 file_size,
221 num_rows: stats.num_rows,
222 num_row_groups: parquet_metadata.num_row_groups() as u64,
223 file_metadata: Some(Arc::new(parquet_metadata)),
224 index_metadata: index_output,
225 num_series,
226 });
227 self.current_file = FileId::random();
228 self.bytes_written.store(0, Ordering::Relaxed)
229 };
230
231 Ok(())
232 }
233
234 pub async fn write_all(
238 &mut self,
239 source: Source,
240 override_sequence: Option<SequenceNumber>, opts: &WriteOptions,
242 ) -> Result<SstInfoArray> {
243 let res = self
244 .write_all_without_cleaning(source, override_sequence, opts)
245 .await;
246 if res.is_err() {
247 let file_id = self.current_file;
249 if let Some(cleaner) = &self.file_cleaner {
250 cleaner.clean_by_file_id(file_id).await;
251 }
252 }
253 res
254 }
255
256 async fn write_all_without_cleaning(
257 &mut self,
258 mut source: Source,
259 override_sequence: Option<SequenceNumber>, opts: &WriteOptions,
261 ) -> Result<SstInfoArray> {
262 let mut results = smallvec![];
263 let write_format = PrimaryKeyWriteFormat::new(self.metadata.clone())
264 .with_override_sequence(override_sequence);
265 let mut stats = SourceStats::default();
266
267 while let Some(res) = self
268 .write_next_batch(&mut source, &write_format, opts)
269 .await
270 .transpose()
271 {
272 match res {
273 Ok(mut batch) => {
274 stats.update(&batch);
275 let start = Instant::now();
276 match self.index_config.build_mode {
278 IndexBuildMode::Sync => {
279 self.current_indexer
280 .as_mut()
281 .unwrap()
282 .update(&mut batch)
283 .await;
284 }
285 IndexBuildMode::Async => {}
286 }
287 self.metrics.update_index += start.elapsed();
288 if let Some(max_file_size) = opts.max_file_size
289 && self.bytes_written.load(Ordering::Relaxed) > max_file_size
290 {
291 self.finish_current_file(&mut results, &mut stats).await?;
292 }
293 }
294 Err(e) => {
295 if let Some(indexer) = &mut self.current_indexer {
296 indexer.abort().await;
297 }
298 return Err(e);
299 }
300 }
301 }
302
303 self.finish_current_file(&mut results, &mut stats).await?;
304
305 Ok(results)
307 }
308
309 pub async fn write_all_flat(
313 &mut self,
314 source: FlatSource,
315 opts: &WriteOptions,
316 ) -> Result<SstInfoArray> {
317 let res = self.write_all_flat_without_cleaning(source, opts).await;
318 if res.is_err() {
319 let file_id = self.current_file;
321 if let Some(cleaner) = &self.file_cleaner {
322 cleaner.clean_by_file_id(file_id).await;
323 }
324 }
325 res
326 }
327
328 async fn write_all_flat_without_cleaning(
329 &mut self,
330 mut source: FlatSource,
331 opts: &WriteOptions,
332 ) -> Result<SstInfoArray> {
333 let mut results = smallvec![];
334 let flat_format = FlatWriteFormat::new(
335 self.metadata.clone(),
336 &FlatSchemaOptions::from_encoding(self.metadata.primary_key_encoding),
337 )
338 .with_override_sequence(None);
339 let mut stats = SourceStats::default();
340
341 while let Some(record_batch) = self
342 .write_next_flat_batch(&mut source, &flat_format, opts)
343 .await
344 .transpose()
345 {
346 match record_batch {
347 Ok(batch) => {
348 stats.update_flat(&batch)?;
349 let start = Instant::now();
350 self.current_indexer
352 .as_mut()
353 .unwrap()
354 .update_flat(&batch)
355 .await;
356 self.metrics.update_index += start.elapsed();
357 if let Some(max_file_size) = opts.max_file_size
358 && self.bytes_written.load(Ordering::Relaxed) > max_file_size
359 {
360 self.finish_current_file(&mut results, &mut stats).await?;
361 }
362 }
363 Err(e) => {
364 if let Some(indexer) = &mut self.current_indexer {
365 indexer.abort().await;
366 }
367 return Err(e);
368 }
369 }
370 }
371
372 self.finish_current_file(&mut results, &mut stats).await?;
373
374 Ok(results)
376 }
377
378 fn customize_column_config(
380 builder: WriterPropertiesBuilder,
381 region_metadata: &RegionMetadataRef,
382 ) -> WriterPropertiesBuilder {
383 let ts_col = ColumnPath::new(vec![
384 region_metadata
385 .time_index_column()
386 .column_schema
387 .name
388 .clone(),
389 ]);
390 let seq_col = ColumnPath::new(vec![SEQUENCE_COLUMN_NAME.to_string()]);
391 let op_type_col = ColumnPath::new(vec![OP_TYPE_COLUMN_NAME.to_string()]);
392
393 builder
394 .set_column_encoding(seq_col.clone(), Encoding::DELTA_BINARY_PACKED)
395 .set_column_dictionary_enabled(seq_col, false)
396 .set_column_encoding(ts_col.clone(), Encoding::DELTA_BINARY_PACKED)
397 .set_column_dictionary_enabled(ts_col, false)
398 .set_column_compression(op_type_col, Compression::UNCOMPRESSED)
399 }
400
401 async fn write_next_batch(
402 &mut self,
403 source: &mut Source,
404 write_format: &PrimaryKeyWriteFormat,
405 opts: &WriteOptions,
406 ) -> Result<Option<Batch>> {
407 let start = Instant::now();
408 let Some(batch) = source.next_batch().await? else {
409 return Ok(None);
410 };
411 self.metrics.iter_source += start.elapsed();
412
413 let arrow_batch = write_format.convert_batch(&batch)?;
414
415 let start = Instant::now();
416 self.maybe_init_writer(write_format.arrow_schema(), opts)
417 .await?
418 .write(&arrow_batch)
419 .await
420 .context(WriteParquetSnafu)?;
421 self.metrics.write_batch += start.elapsed();
422 Ok(Some(batch))
423 }
424
425 async fn write_next_flat_batch(
426 &mut self,
427 source: &mut FlatSource,
428 flat_format: &FlatWriteFormat,
429 opts: &WriteOptions,
430 ) -> Result<Option<RecordBatch>> {
431 let start = Instant::now();
432 let Some(record_batch) = source.next_batch().await? else {
433 return Ok(None);
434 };
435 self.metrics.iter_source += start.elapsed();
436
437 let arrow_batch = flat_format.convert_batch(&record_batch)?;
438
439 let start = Instant::now();
440 self.maybe_init_writer(flat_format.arrow_schema(), opts)
441 .await?
442 .write(&arrow_batch)
443 .await
444 .context(WriteParquetSnafu)?;
445 self.metrics.write_batch += start.elapsed();
446 Ok(Some(record_batch))
447 }
448
449 async fn maybe_init_writer(
450 &mut self,
451 schema: &SchemaRef,
452 opts: &WriteOptions,
453 ) -> Result<&mut AsyncArrowWriter<SizeAwareWriter<F::Writer>>> {
454 if let Some(ref mut w) = self.writer {
455 Ok(w)
456 } else {
457 let json = self.metadata.to_json().context(InvalidMetadataSnafu)?;
458 let key_value_meta = KeyValue::new(PARQUET_METADATA_KEY.to_string(), json);
459
460 let props_builder = WriterProperties::builder()
462 .set_key_value_metadata(Some(vec![key_value_meta]))
463 .set_compression(Compression::ZSTD(ZstdLevel::default()))
464 .set_encoding(Encoding::PLAIN)
465 .set_max_row_group_size(opts.row_group_size)
466 .set_column_index_truncate_length(None)
467 .set_statistics_truncate_length(None);
468
469 let props_builder = Self::customize_column_config(props_builder, &self.metadata);
470 let writer_props = props_builder.build();
471
472 let sst_file_path = self.path_provider.build_sst_file_path(RegionFileId::new(
473 self.metadata.region_id,
474 self.current_file,
475 ));
476 let writer = SizeAwareWriter::new(
477 self.writer_factory.create(&sst_file_path).await?,
478 self.bytes_written.clone(),
479 );
480 let arrow_writer =
481 AsyncArrowWriter::try_new(writer, schema.clone(), Some(writer_props))
482 .context(WriteParquetSnafu)?;
483 self.writer = Some(arrow_writer);
484
485 let indexer = self.indexer_builder.build(self.current_file).await;
486 self.current_indexer = Some(indexer);
487
488 Ok(self.writer.as_mut().unwrap())
490 }
491 }
492}
493
494#[derive(Default)]
495struct SourceStats {
496 num_rows: usize,
498 time_range: Option<(Timestamp, Timestamp)>,
500 series_estimator: SeriesEstimator,
502}
503
504impl SourceStats {
505 fn update(&mut self, batch: &Batch) {
506 if batch.is_empty() {
507 return;
508 }
509
510 self.num_rows += batch.num_rows();
511 self.series_estimator.update(batch);
512 let (min_in_batch, max_in_batch) = (
514 batch.first_timestamp().unwrap(),
515 batch.last_timestamp().unwrap(),
516 );
517 if let Some(time_range) = &mut self.time_range {
518 time_range.0 = time_range.0.min(min_in_batch);
519 time_range.1 = time_range.1.max(max_in_batch);
520 } else {
521 self.time_range = Some((min_in_batch, max_in_batch));
522 }
523 }
524
525 fn update_flat(&mut self, record_batch: &RecordBatch) -> Result<()> {
526 if record_batch.num_rows() == 0 {
527 return Ok(());
528 }
529
530 self.num_rows += record_batch.num_rows();
531 self.series_estimator.update_flat(record_batch);
532
533 let time_index_col_idx = time_index_column_index(record_batch.num_columns());
535 let timestamp_array = record_batch.column(time_index_col_idx);
536
537 if let Some((min_in_batch, max_in_batch)) = timestamp_range_from_array(timestamp_array)? {
538 if let Some(time_range) = &mut self.time_range {
539 time_range.0 = time_range.0.min(min_in_batch);
540 time_range.1 = time_range.1.max(max_in_batch);
541 } else {
542 self.time_range = Some((min_in_batch, max_in_batch));
543 }
544 }
545
546 Ok(())
547 }
548}
549
550fn timestamp_range_from_array(
552 timestamp_array: &ArrayRef,
553) -> Result<Option<(Timestamp, Timestamp)>> {
554 let (min_ts, max_ts) = match timestamp_array.data_type() {
555 DataType::Timestamp(TimeUnit::Second, _) => {
556 let array = timestamp_array
557 .as_any()
558 .downcast_ref::<TimestampSecondArray>()
559 .unwrap();
560 let min_val = min(array).map(Timestamp::new_second);
561 let max_val = max(array).map(Timestamp::new_second);
562 (min_val, max_val)
563 }
564 DataType::Timestamp(TimeUnit::Millisecond, _) => {
565 let array = timestamp_array
566 .as_any()
567 .downcast_ref::<TimestampMillisecondArray>()
568 .unwrap();
569 let min_val = min(array).map(Timestamp::new_millisecond);
570 let max_val = max(array).map(Timestamp::new_millisecond);
571 (min_val, max_val)
572 }
573 DataType::Timestamp(TimeUnit::Microsecond, _) => {
574 let array = timestamp_array
575 .as_any()
576 .downcast_ref::<TimestampMicrosecondArray>()
577 .unwrap();
578 let min_val = min(array).map(Timestamp::new_microsecond);
579 let max_val = max(array).map(Timestamp::new_microsecond);
580 (min_val, max_val)
581 }
582 DataType::Timestamp(TimeUnit::Nanosecond, _) => {
583 let array = timestamp_array
584 .as_any()
585 .downcast_ref::<TimestampNanosecondArray>()
586 .unwrap();
587 let min_val = min(array).map(Timestamp::new_nanosecond);
588 let max_val = max(array).map(Timestamp::new_nanosecond);
589 (min_val, max_val)
590 }
591 _ => {
592 return UnexpectedSnafu {
593 reason: format!(
594 "Unexpected data type of time index: {:?}",
595 timestamp_array.data_type()
596 ),
597 }
598 .fail();
599 }
600 };
601
602 Ok(min_ts.zip(max_ts))
604}
605
606struct SizeAwareWriter<W> {
609 inner: W,
610 size: Arc<AtomicUsize>,
611}
612
613impl<W> SizeAwareWriter<W> {
614 fn new(inner: W, size: Arc<AtomicUsize>) -> Self {
615 Self {
616 inner,
617 size: size.clone(),
618 }
619 }
620}
621
622impl<W> AsyncWrite for SizeAwareWriter<W>
623where
624 W: AsyncWrite + Unpin,
625{
626 fn poll_write(
627 mut self: Pin<&mut Self>,
628 cx: &mut Context<'_>,
629 buf: &[u8],
630 ) -> Poll<std::result::Result<usize, std::io::Error>> {
631 let this = self.as_mut().get_mut();
632
633 match Pin::new(&mut this.inner).poll_write(cx, buf) {
634 Poll::Ready(Ok(bytes_written)) => {
635 this.size.fetch_add(bytes_written, Ordering::Relaxed);
636 Poll::Ready(Ok(bytes_written))
637 }
638 other => other,
639 }
640 }
641
642 fn poll_flush(
643 mut self: Pin<&mut Self>,
644 cx: &mut Context<'_>,
645 ) -> Poll<std::result::Result<(), std::io::Error>> {
646 Pin::new(&mut self.inner).poll_flush(cx)
647 }
648
649 fn poll_shutdown(
650 mut self: Pin<&mut Self>,
651 cx: &mut Context<'_>,
652 ) -> Poll<std::result::Result<(), std::io::Error>> {
653 Pin::new(&mut self.inner).poll_shutdown(cx)
654 }
655}