mito2/sst/parquet/
reader.rs

1// Copyright 2023 Greptime Team
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15//! Parquet reader.
16
17use std::collections::VecDeque;
18use std::sync::Arc;
19use std::time::{Duration, Instant};
20
21use api::v1::SemanticType;
22use async_trait::async_trait;
23use common_recordbatch::filter::SimpleFilterEvaluator;
24use common_telemetry::{debug, warn};
25use datafusion_expr::Expr;
26use datatypes::arrow::error::ArrowError;
27use datatypes::arrow::record_batch::RecordBatch;
28use datatypes::data_type::ConcreteDataType;
29use object_store::ObjectStore;
30use parquet::arrow::arrow_reader::{ParquetRecordBatchReader, RowSelection};
31use parquet::arrow::{parquet_to_arrow_field_levels, FieldLevels, ProjectionMask};
32use parquet::file::metadata::ParquetMetaData;
33use parquet::format::KeyValue;
34use snafu::{OptionExt, ResultExt};
35use store_api::metadata::{ColumnMetadata, RegionMetadata, RegionMetadataRef};
36use store_api::storage::ColumnId;
37use table::predicate::Predicate;
38
39use crate::cache::index::result_cache::PredicateKey;
40use crate::cache::CacheStrategy;
41use crate::error::{
42    ArrowReaderSnafu, InvalidMetadataSnafu, InvalidParquetSnafu, ReadDataPartSnafu,
43    ReadParquetSnafu, Result,
44};
45use crate::metrics::{
46    PRECISE_FILTER_ROWS_TOTAL, READ_ROWS_IN_ROW_GROUP_TOTAL, READ_ROWS_TOTAL,
47    READ_ROW_GROUPS_TOTAL, READ_STAGE_ELAPSED,
48};
49use crate::read::prune::{PruneReader, Source};
50use crate::read::{Batch, BatchReader};
51use crate::row_converter::build_primary_key_codec;
52use crate::sst::file::{FileHandle, FileId};
53use crate::sst::index::bloom_filter::applier::BloomFilterIndexApplierRef;
54use crate::sst::index::fulltext_index::applier::FulltextIndexApplierRef;
55use crate::sst::index::inverted_index::applier::InvertedIndexApplierRef;
56use crate::sst::parquet::file_range::{FileRangeContext, FileRangeContextRef};
57use crate::sst::parquet::format::ReadFormat;
58use crate::sst::parquet::metadata::MetadataLoader;
59use crate::sst::parquet::row_group::InMemoryRowGroup;
60use crate::sst::parquet::row_selection::RowGroupSelection;
61use crate::sst::parquet::stats::RowGroupPruningStats;
62use crate::sst::parquet::{DEFAULT_READ_BATCH_SIZE, PARQUET_METADATA_KEY};
63
64const INDEX_TYPE_FULLTEXT: &str = "fulltext";
65const INDEX_TYPE_INVERTED: &str = "inverted";
66const INDEX_TYPE_BLOOM: &str = "bloom filter";
67
68macro_rules! handle_index_error {
69    ($err:expr, $file_handle:expr, $index_type:expr) => {
70        if cfg!(any(test, feature = "test")) {
71            panic!(
72                "Failed to apply {} index, region_id: {}, file_id: {}, err: {:?}",
73                $index_type,
74                $file_handle.region_id(),
75                $file_handle.file_id(),
76                $err
77            );
78        } else {
79            warn!(
80                $err; "Failed to apply {} index, region_id: {}, file_id: {}",
81                $index_type,
82                $file_handle.region_id(),
83                $file_handle.file_id()
84            );
85        }
86    };
87}
88
89/// Parquet SST reader builder.
90pub struct ParquetReaderBuilder {
91    /// SST directory.
92    file_dir: String,
93    file_handle: FileHandle,
94    object_store: ObjectStore,
95    /// Predicate to push down.
96    predicate: Option<Predicate>,
97    /// Metadata of columns to read.
98    ///
99    /// `None` reads all columns. Due to schema change, the projection
100    /// can contain columns not in the parquet file.
101    projection: Option<Vec<ColumnId>>,
102    /// Strategy to cache SST data.
103    cache_strategy: CacheStrategy,
104    /// Index appliers.
105    inverted_index_applier: Option<InvertedIndexApplierRef>,
106    bloom_filter_index_applier: Option<BloomFilterIndexApplierRef>,
107    fulltext_index_applier: Option<FulltextIndexApplierRef>,
108    /// Expected metadata of the region while reading the SST.
109    /// This is usually the latest metadata of the region. The reader use
110    /// it get the correct column id of a column by name.
111    expected_metadata: Option<RegionMetadataRef>,
112}
113
114impl ParquetReaderBuilder {
115    /// Returns a new [ParquetReaderBuilder] to read specific SST.
116    pub fn new(
117        file_dir: String,
118        file_handle: FileHandle,
119        object_store: ObjectStore,
120    ) -> ParquetReaderBuilder {
121        ParquetReaderBuilder {
122            file_dir,
123            file_handle,
124            object_store,
125            predicate: None,
126            projection: None,
127            cache_strategy: CacheStrategy::Disabled,
128            inverted_index_applier: None,
129            bloom_filter_index_applier: None,
130            fulltext_index_applier: None,
131            expected_metadata: None,
132        }
133    }
134
135    /// Attaches the predicate to the builder.
136    #[must_use]
137    pub fn predicate(mut self, predicate: Option<Predicate>) -> ParquetReaderBuilder {
138        self.predicate = predicate;
139        self
140    }
141
142    /// Attaches the projection to the builder.
143    ///
144    /// The reader only applies the projection to fields.
145    #[must_use]
146    pub fn projection(mut self, projection: Option<Vec<ColumnId>>) -> ParquetReaderBuilder {
147        self.projection = projection;
148        self
149    }
150
151    /// Attaches the cache to the builder.
152    #[must_use]
153    pub fn cache(mut self, cache: CacheStrategy) -> ParquetReaderBuilder {
154        self.cache_strategy = cache;
155        self
156    }
157
158    /// Attaches the inverted index applier to the builder.
159    #[must_use]
160    pub(crate) fn inverted_index_applier(
161        mut self,
162        index_applier: Option<InvertedIndexApplierRef>,
163    ) -> Self {
164        self.inverted_index_applier = index_applier;
165        self
166    }
167
168    /// Attaches the bloom filter index applier to the builder.
169    #[must_use]
170    pub(crate) fn bloom_filter_index_applier(
171        mut self,
172        index_applier: Option<BloomFilterIndexApplierRef>,
173    ) -> Self {
174        self.bloom_filter_index_applier = index_applier;
175        self
176    }
177
178    /// Attaches the fulltext index applier to the builder.
179    #[must_use]
180    pub(crate) fn fulltext_index_applier(
181        mut self,
182        index_applier: Option<FulltextIndexApplierRef>,
183    ) -> Self {
184        self.fulltext_index_applier = index_applier;
185        self
186    }
187
188    /// Attaches the expected metadata to the builder.
189    #[must_use]
190    pub fn expected_metadata(mut self, expected_metadata: Option<RegionMetadataRef>) -> Self {
191        self.expected_metadata = expected_metadata;
192        self
193    }
194
195    /// Builds a [ParquetReader].
196    ///
197    /// This needs to perform IO operation.
198    pub async fn build(&self) -> Result<ParquetReader> {
199        let mut metrics = ReaderMetrics::default();
200
201        let (context, selection) = self.build_reader_input(&mut metrics).await?;
202        ParquetReader::new(Arc::new(context), selection).await
203    }
204
205    /// Builds a [FileRangeContext] and collects row groups to read.
206    ///
207    /// This needs to perform IO operation.
208    pub(crate) async fn build_reader_input(
209        &self,
210        metrics: &mut ReaderMetrics,
211    ) -> Result<(FileRangeContext, RowGroupSelection)> {
212        let start = Instant::now();
213
214        let file_path = self.file_handle.file_path(&self.file_dir);
215        let file_size = self.file_handle.meta_ref().file_size;
216
217        // Loads parquet metadata of the file.
218        let parquet_meta = self.read_parquet_metadata(&file_path, file_size).await?;
219        // Decodes region metadata.
220        let key_value_meta = parquet_meta.file_metadata().key_value_metadata();
221        // Gets the metadata stored in the SST.
222        let region_meta = Arc::new(Self::get_region_metadata(&file_path, key_value_meta)?);
223        let read_format = if let Some(column_ids) = &self.projection {
224            ReadFormat::new(region_meta.clone(), column_ids.iter().copied())
225        } else {
226            // Lists all column ids to read, we always use the expected metadata if possible.
227            let expected_meta = self.expected_metadata.as_ref().unwrap_or(&region_meta);
228            ReadFormat::new(
229                region_meta.clone(),
230                expected_meta
231                    .column_metadatas
232                    .iter()
233                    .map(|col| col.column_id),
234            )
235        };
236
237        // Computes the projection mask.
238        let parquet_schema_desc = parquet_meta.file_metadata().schema_descr();
239        let indices = read_format.projection_indices();
240        // Now we assumes we don't have nested schemas.
241        // TODO(yingwen): Revisit this if we introduce nested types such as JSON type.
242        let projection_mask = ProjectionMask::roots(parquet_schema_desc, indices.iter().copied());
243
244        // Computes the field levels.
245        let hint = Some(read_format.arrow_schema().fields());
246        let field_levels =
247            parquet_to_arrow_field_levels(parquet_schema_desc, projection_mask.clone(), hint)
248                .context(ReadDataPartSnafu)?;
249        let selection = self
250            .row_groups_to_read(&read_format, &parquet_meta, &mut metrics.filter_metrics)
251            .await;
252
253        let reader_builder = RowGroupReaderBuilder {
254            file_handle: self.file_handle.clone(),
255            file_path,
256            parquet_meta,
257            object_store: self.object_store.clone(),
258            projection: projection_mask,
259            field_levels,
260            cache_strategy: self.cache_strategy.clone(),
261        };
262
263        let filters = if let Some(predicate) = &self.predicate {
264            predicate
265                .exprs()
266                .iter()
267                .filter_map(|expr| {
268                    SimpleFilterContext::new_opt(
269                        &region_meta,
270                        self.expected_metadata.as_deref(),
271                        expr,
272                    )
273                })
274                .collect::<Vec<_>>()
275        } else {
276            vec![]
277        };
278
279        let codec = build_primary_key_codec(read_format.metadata());
280
281        let context = FileRangeContext::new(reader_builder, filters, read_format, codec);
282
283        metrics.build_cost += start.elapsed();
284
285        Ok((context, selection))
286    }
287
288    /// Decodes region metadata from key value.
289    fn get_region_metadata(
290        file_path: &str,
291        key_value_meta: Option<&Vec<KeyValue>>,
292    ) -> Result<RegionMetadata> {
293        let key_values = key_value_meta.context(InvalidParquetSnafu {
294            file: file_path,
295            reason: "missing key value meta",
296        })?;
297        let meta_value = key_values
298            .iter()
299            .find(|kv| kv.key == PARQUET_METADATA_KEY)
300            .with_context(|| InvalidParquetSnafu {
301                file: file_path,
302                reason: format!("key {} not found", PARQUET_METADATA_KEY),
303            })?;
304        let json = meta_value
305            .value
306            .as_ref()
307            .with_context(|| InvalidParquetSnafu {
308                file: file_path,
309                reason: format!("No value for key {}", PARQUET_METADATA_KEY),
310            })?;
311
312        RegionMetadata::from_json(json).context(InvalidMetadataSnafu)
313    }
314
315    /// Reads parquet metadata of specific file.
316    async fn read_parquet_metadata(
317        &self,
318        file_path: &str,
319        file_size: u64,
320    ) -> Result<Arc<ParquetMetaData>> {
321        let _t = READ_STAGE_ELAPSED
322            .with_label_values(&["read_parquet_metadata"])
323            .start_timer();
324
325        let region_id = self.file_handle.region_id();
326        let file_id = self.file_handle.file_id();
327        // Tries to get from global cache.
328        if let Some(metadata) = self
329            .cache_strategy
330            .get_parquet_meta_data(region_id, file_id)
331            .await
332        {
333            return Ok(metadata);
334        }
335
336        // Cache miss, load metadata directly.
337        let metadata_loader = MetadataLoader::new(self.object_store.clone(), file_path, file_size);
338        let metadata = metadata_loader.load().await?;
339        let metadata = Arc::new(metadata);
340        // Cache the metadata.
341        self.cache_strategy.put_parquet_meta_data(
342            self.file_handle.region_id(),
343            self.file_handle.file_id(),
344            metadata.clone(),
345        );
346
347        Ok(metadata)
348    }
349
350    /// Computes row groups to read, along with their respective row selections.
351    async fn row_groups_to_read(
352        &self,
353        read_format: &ReadFormat,
354        parquet_meta: &ParquetMetaData,
355        metrics: &mut ReaderFilterMetrics,
356    ) -> RowGroupSelection {
357        let num_row_groups = parquet_meta.num_row_groups();
358        let num_rows = parquet_meta.file_metadata().num_rows();
359        if num_row_groups == 0 || num_rows == 0 {
360            return RowGroupSelection::default();
361        }
362
363        // Let's assume that the number of rows in the first row group
364        // can represent the `row_group_size` of the Parquet file.
365        let row_group_size = parquet_meta.row_group(0).num_rows() as usize;
366        if row_group_size == 0 {
367            return RowGroupSelection::default();
368        }
369
370        metrics.rg_total += num_row_groups;
371        metrics.rows_total += num_rows as usize;
372
373        let mut output = RowGroupSelection::new(row_group_size, num_rows as _);
374
375        self.prune_row_groups_by_minmax(read_format, parquet_meta, &mut output, metrics);
376        if output.is_empty() {
377            return output;
378        }
379
380        let fulltext_filtered = self
381            .prune_row_groups_by_fulltext_index(row_group_size, parquet_meta, &mut output, metrics)
382            .await;
383        if output.is_empty() {
384            return output;
385        }
386
387        self.prune_row_groups_by_inverted_index(row_group_size, &mut output, metrics)
388            .await;
389        if output.is_empty() {
390            return output;
391        }
392
393        self.prune_row_groups_by_bloom_filter(row_group_size, parquet_meta, &mut output, metrics)
394            .await;
395        if output.is_empty() {
396            return output;
397        }
398
399        if !fulltext_filtered {
400            self.prune_row_groups_by_fulltext_bloom(
401                row_group_size,
402                parquet_meta,
403                &mut output,
404                metrics,
405            )
406            .await;
407        }
408        output
409    }
410
411    /// Prunes row groups by fulltext index. Returns `true` if the row groups are pruned.
412    async fn prune_row_groups_by_fulltext_index(
413        &self,
414        row_group_size: usize,
415        parquet_meta: &ParquetMetaData,
416        output: &mut RowGroupSelection,
417        metrics: &mut ReaderFilterMetrics,
418    ) -> bool {
419        let Some(index_applier) = &self.fulltext_index_applier else {
420            return false;
421        };
422        if !self.file_handle.meta_ref().fulltext_index_available() {
423            return false;
424        }
425
426        let predicate_key = index_applier.predicate_key();
427        // Fast path: return early if the result is in the cache.
428        if self.index_result_cache_get(
429            predicate_key,
430            self.file_handle.file_id(),
431            output,
432            metrics,
433            INDEX_TYPE_FULLTEXT,
434        ) {
435            return true;
436        }
437
438        // Slow path: apply the index from the file.
439        let file_size_hint = self.file_handle.meta_ref().index_file_size();
440        let apply_res = index_applier
441            .apply_fine(self.file_handle.file_id(), Some(file_size_hint))
442            .await;
443        let selection = match apply_res {
444            Ok(Some(res)) => {
445                RowGroupSelection::from_row_ids(res, row_group_size, parquet_meta.num_row_groups())
446            }
447            Ok(None) => return false,
448            Err(err) => {
449                handle_index_error!(err, self.file_handle, INDEX_TYPE_FULLTEXT);
450                return false;
451            }
452        };
453
454        self.apply_index_result_and_update_cache(
455            predicate_key,
456            self.file_handle.file_id(),
457            selection,
458            output,
459            metrics,
460            INDEX_TYPE_FULLTEXT,
461        );
462        true
463    }
464
465    /// Applies index to prune row groups.
466    ///
467    /// TODO(zhongzc): Devise a mechanism to enforce the non-use of indices
468    /// as an escape route in case of index issues, and it can be used to test
469    /// the correctness of the index.
470    async fn prune_row_groups_by_inverted_index(
471        &self,
472        row_group_size: usize,
473        output: &mut RowGroupSelection,
474        metrics: &mut ReaderFilterMetrics,
475    ) -> bool {
476        let Some(index_applier) = &self.inverted_index_applier else {
477            return false;
478        };
479        if !self.file_handle.meta_ref().inverted_index_available() {
480            return false;
481        }
482
483        let predicate_key = index_applier.predicate_key();
484        // Fast path: return early if the result is in the cache.
485        if self.index_result_cache_get(
486            predicate_key,
487            self.file_handle.file_id(),
488            output,
489            metrics,
490            INDEX_TYPE_INVERTED,
491        ) {
492            return true;
493        }
494
495        // Slow path: apply the index from the file.
496        let file_size_hint = self.file_handle.meta_ref().index_file_size();
497        let apply_res = index_applier
498            .apply(self.file_handle.file_id(), Some(file_size_hint))
499            .await;
500        let selection = match apply_res {
501            Ok(output) => {
502                RowGroupSelection::from_inverted_index_apply_output(row_group_size, output)
503            }
504            Err(err) => {
505                handle_index_error!(err, self.file_handle, INDEX_TYPE_INVERTED);
506                return false;
507            }
508        };
509
510        self.apply_index_result_and_update_cache(
511            predicate_key,
512            self.file_handle.file_id(),
513            selection,
514            output,
515            metrics,
516            INDEX_TYPE_INVERTED,
517        );
518        true
519    }
520
521    async fn prune_row_groups_by_bloom_filter(
522        &self,
523        row_group_size: usize,
524        parquet_meta: &ParquetMetaData,
525        output: &mut RowGroupSelection,
526        metrics: &mut ReaderFilterMetrics,
527    ) -> bool {
528        let Some(index_applier) = &self.bloom_filter_index_applier else {
529            return false;
530        };
531        if !self.file_handle.meta_ref().bloom_filter_index_available() {
532            return false;
533        }
534
535        let predicate_key = index_applier.predicate_key();
536        // Fast path: return early if the result is in the cache.
537        if self.index_result_cache_get(
538            predicate_key,
539            self.file_handle.file_id(),
540            output,
541            metrics,
542            INDEX_TYPE_BLOOM,
543        ) {
544            return true;
545        }
546
547        // Slow path: apply the index from the file.
548        let file_size_hint = self.file_handle.meta_ref().index_file_size();
549        let rgs = parquet_meta
550            .row_groups()
551            .iter()
552            .enumerate()
553            .map(|(i, rg)| (rg.num_rows() as usize, output.contains_row_group(i)));
554        let apply_res = index_applier
555            .apply(self.file_handle.file_id(), Some(file_size_hint), rgs)
556            .await;
557        let selection = match apply_res {
558            Ok(apply_output) => RowGroupSelection::from_row_ranges(apply_output, row_group_size),
559            Err(err) => {
560                handle_index_error!(err, self.file_handle, INDEX_TYPE_BLOOM);
561                return false;
562            }
563        };
564
565        self.apply_index_result_and_update_cache(
566            predicate_key,
567            self.file_handle.file_id(),
568            selection,
569            output,
570            metrics,
571            INDEX_TYPE_BLOOM,
572        );
573        true
574    }
575
576    async fn prune_row_groups_by_fulltext_bloom(
577        &self,
578        row_group_size: usize,
579        parquet_meta: &ParquetMetaData,
580        output: &mut RowGroupSelection,
581        metrics: &mut ReaderFilterMetrics,
582    ) -> bool {
583        let Some(index_applier) = &self.fulltext_index_applier else {
584            return false;
585        };
586        if !self.file_handle.meta_ref().fulltext_index_available() {
587            return false;
588        }
589
590        let predicate_key = index_applier.predicate_key();
591        // Fast path: return early if the result is in the cache.
592        if self.index_result_cache_get(
593            predicate_key,
594            self.file_handle.file_id(),
595            output,
596            metrics,
597            INDEX_TYPE_FULLTEXT,
598        ) {
599            return true;
600        }
601
602        // Slow path: apply the index from the file.
603        let file_size_hint = self.file_handle.meta_ref().index_file_size();
604        let rgs = parquet_meta
605            .row_groups()
606            .iter()
607            .enumerate()
608            .map(|(i, rg)| (rg.num_rows() as usize, output.contains_row_group(i)));
609        let apply_res = index_applier
610            .apply_coarse(self.file_handle.file_id(), Some(file_size_hint), rgs)
611            .await;
612        let selection = match apply_res {
613            Ok(Some(apply_output)) => {
614                RowGroupSelection::from_row_ranges(apply_output, row_group_size)
615            }
616            Ok(None) => return false,
617            Err(err) => {
618                handle_index_error!(err, self.file_handle, INDEX_TYPE_FULLTEXT);
619                return false;
620            }
621        };
622
623        self.apply_index_result_and_update_cache(
624            predicate_key,
625            self.file_handle.file_id(),
626            selection,
627            output,
628            metrics,
629            INDEX_TYPE_FULLTEXT,
630        );
631        true
632    }
633
634    /// Prunes row groups by min-max index.
635    fn prune_row_groups_by_minmax(
636        &self,
637        read_format: &ReadFormat,
638        parquet_meta: &ParquetMetaData,
639        output: &mut RowGroupSelection,
640        metrics: &mut ReaderFilterMetrics,
641    ) -> bool {
642        let Some(predicate) = &self.predicate else {
643            return false;
644        };
645
646        let row_groups_before = output.row_group_count();
647
648        let region_meta = read_format.metadata();
649        let row_groups = parquet_meta.row_groups();
650        let stats =
651            RowGroupPruningStats::new(row_groups, read_format, self.expected_metadata.clone());
652        let prune_schema = self
653            .expected_metadata
654            .as_ref()
655            .map(|meta| meta.schema.arrow_schema())
656            .unwrap_or_else(|| region_meta.schema.arrow_schema());
657
658        // Here we use the schema of the SST to build the physical expression. If the column
659        // in the SST doesn't have the same column id as the column in the expected metadata,
660        // we will get a None statistics for that column.
661        predicate
662            .prune_with_stats(&stats, prune_schema)
663            .iter()
664            .zip(0..parquet_meta.num_row_groups())
665            .for_each(|(mask, row_group)| {
666                if !*mask {
667                    output.remove_row_group(row_group);
668                }
669            });
670
671        let row_groups_after = output.row_group_count();
672        metrics.rg_minmax_filtered += row_groups_before - row_groups_after;
673
674        true
675    }
676
677    fn index_result_cache_get(
678        &self,
679        predicate_key: &PredicateKey,
680        file_id: FileId,
681        output: &mut RowGroupSelection,
682        metrics: &mut ReaderFilterMetrics,
683        index_type: &str,
684    ) -> bool {
685        if let Some(index_result_cache) = &self.cache_strategy.index_result_cache() {
686            let result = index_result_cache.get(predicate_key, file_id);
687            if let Some(result) = result {
688                apply_selection_and_update_metrics(output, &result, metrics, index_type);
689                return true;
690            }
691        }
692        false
693    }
694
695    fn apply_index_result_and_update_cache(
696        &self,
697        predicate_key: &PredicateKey,
698        file_id: FileId,
699        result: RowGroupSelection,
700        output: &mut RowGroupSelection,
701        metrics: &mut ReaderFilterMetrics,
702        index_type: &str,
703    ) {
704        apply_selection_and_update_metrics(output, &result, metrics, index_type);
705
706        if let Some(index_result_cache) = &self.cache_strategy.index_result_cache() {
707            index_result_cache.put(predicate_key.clone(), file_id, Arc::new(result));
708        }
709    }
710}
711
712fn apply_selection_and_update_metrics(
713    output: &mut RowGroupSelection,
714    result: &RowGroupSelection,
715    metrics: &mut ReaderFilterMetrics,
716    index_type: &str,
717) {
718    let intersection = output.intersect(result);
719
720    let row_group_count = output.row_group_count() - intersection.row_group_count();
721    let row_count = output.row_count() - intersection.row_count();
722
723    metrics.update_index_metrics(index_type, row_group_count, row_count);
724
725    *output = intersection;
726}
727
728/// Metrics of filtering rows groups and rows.
729#[derive(Debug, Default, Clone, Copy)]
730pub(crate) struct ReaderFilterMetrics {
731    /// Number of row groups before filtering.
732    pub(crate) rg_total: usize,
733    /// Number of row groups filtered by fulltext index.
734    pub(crate) rg_fulltext_filtered: usize,
735    /// Number of row groups filtered by inverted index.
736    pub(crate) rg_inverted_filtered: usize,
737    /// Number of row groups filtered by min-max index.
738    pub(crate) rg_minmax_filtered: usize,
739    /// Number of row groups filtered by bloom filter index.
740    pub(crate) rg_bloom_filtered: usize,
741
742    /// Number of rows in row group before filtering.
743    pub(crate) rows_total: usize,
744    /// Number of rows in row group filtered by fulltext index.
745    pub(crate) rows_fulltext_filtered: usize,
746    /// Number of rows in row group filtered by inverted index.
747    pub(crate) rows_inverted_filtered: usize,
748    /// Number of rows in row group filtered by bloom filter index.
749    pub(crate) rows_bloom_filtered: usize,
750    /// Number of rows filtered by precise filter.
751    pub(crate) rows_precise_filtered: usize,
752}
753
754impl ReaderFilterMetrics {
755    /// Adds `other` metrics to this metrics.
756    pub(crate) fn merge_from(&mut self, other: &ReaderFilterMetrics) {
757        self.rg_total += other.rg_total;
758        self.rg_fulltext_filtered += other.rg_fulltext_filtered;
759        self.rg_inverted_filtered += other.rg_inverted_filtered;
760        self.rg_minmax_filtered += other.rg_minmax_filtered;
761        self.rg_bloom_filtered += other.rg_bloom_filtered;
762
763        self.rows_total += other.rows_total;
764        self.rows_fulltext_filtered += other.rows_fulltext_filtered;
765        self.rows_inverted_filtered += other.rows_inverted_filtered;
766        self.rows_bloom_filtered += other.rows_bloom_filtered;
767        self.rows_precise_filtered += other.rows_precise_filtered;
768    }
769
770    /// Reports metrics.
771    pub(crate) fn observe(&self) {
772        READ_ROW_GROUPS_TOTAL
773            .with_label_values(&["before_filtering"])
774            .inc_by(self.rg_total as u64);
775        READ_ROW_GROUPS_TOTAL
776            .with_label_values(&["fulltext_index_filtered"])
777            .inc_by(self.rg_fulltext_filtered as u64);
778        READ_ROW_GROUPS_TOTAL
779            .with_label_values(&["inverted_index_filtered"])
780            .inc_by(self.rg_inverted_filtered as u64);
781        READ_ROW_GROUPS_TOTAL
782            .with_label_values(&["minmax_index_filtered"])
783            .inc_by(self.rg_minmax_filtered as u64);
784        READ_ROW_GROUPS_TOTAL
785            .with_label_values(&["bloom_filter_index_filtered"])
786            .inc_by(self.rg_bloom_filtered as u64);
787
788        PRECISE_FILTER_ROWS_TOTAL
789            .with_label_values(&["parquet"])
790            .inc_by(self.rows_precise_filtered as u64);
791        READ_ROWS_IN_ROW_GROUP_TOTAL
792            .with_label_values(&["before_filtering"])
793            .inc_by(self.rows_total as u64);
794        READ_ROWS_IN_ROW_GROUP_TOTAL
795            .with_label_values(&["fulltext_index_filtered"])
796            .inc_by(self.rows_fulltext_filtered as u64);
797        READ_ROWS_IN_ROW_GROUP_TOTAL
798            .with_label_values(&["inverted_index_filtered"])
799            .inc_by(self.rows_inverted_filtered as u64);
800        READ_ROWS_IN_ROW_GROUP_TOTAL
801            .with_label_values(&["bloom_filter_index_filtered"])
802            .inc_by(self.rows_bloom_filtered as u64);
803    }
804
805    fn update_index_metrics(&mut self, index_type: &str, row_group_count: usize, row_count: usize) {
806        match index_type {
807            INDEX_TYPE_FULLTEXT => {
808                self.rg_fulltext_filtered += row_group_count;
809                self.rows_fulltext_filtered += row_count;
810            }
811            INDEX_TYPE_INVERTED => {
812                self.rg_inverted_filtered += row_group_count;
813                self.rows_inverted_filtered += row_count;
814            }
815            INDEX_TYPE_BLOOM => {
816                self.rg_bloom_filtered += row_group_count;
817                self.rows_bloom_filtered += row_count;
818            }
819            _ => {}
820        }
821    }
822}
823
824/// Parquet reader metrics.
825#[derive(Debug, Default, Clone)]
826pub(crate) struct ReaderMetrics {
827    /// Filtered row groups and rows metrics.
828    pub(crate) filter_metrics: ReaderFilterMetrics,
829    /// Duration to build the parquet reader.
830    pub(crate) build_cost: Duration,
831    /// Duration to scan the reader.
832    pub(crate) scan_cost: Duration,
833    /// Number of record batches read.
834    pub(crate) num_record_batches: usize,
835    /// Number of batches decoded.
836    pub(crate) num_batches: usize,
837    /// Number of rows read.
838    pub(crate) num_rows: usize,
839}
840
841impl ReaderMetrics {
842    /// Adds `other` metrics to this metrics.
843    pub(crate) fn merge_from(&mut self, other: &ReaderMetrics) {
844        self.filter_metrics.merge_from(&other.filter_metrics);
845        self.build_cost += other.build_cost;
846        self.scan_cost += other.scan_cost;
847        self.num_record_batches += other.num_record_batches;
848        self.num_batches += other.num_batches;
849        self.num_rows += other.num_rows;
850    }
851
852    /// Reports total rows.
853    pub(crate) fn observe_rows(&self, read_type: &str) {
854        READ_ROWS_TOTAL
855            .with_label_values(&[read_type])
856            .inc_by(self.num_rows as u64);
857    }
858}
859
860/// Builder to build a [ParquetRecordBatchReader] for a row group.
861pub(crate) struct RowGroupReaderBuilder {
862    /// SST file to read.
863    ///
864    /// Holds the file handle to avoid the file purge it.
865    file_handle: FileHandle,
866    /// Path of the file.
867    file_path: String,
868    /// Metadata of the parquet file.
869    parquet_meta: Arc<ParquetMetaData>,
870    /// Object store as an Operator.
871    object_store: ObjectStore,
872    /// Projection mask.
873    projection: ProjectionMask,
874    /// Field levels to read.
875    field_levels: FieldLevels,
876    /// Cache.
877    cache_strategy: CacheStrategy,
878}
879
880impl RowGroupReaderBuilder {
881    /// Path of the file to read.
882    pub(crate) fn file_path(&self) -> &str {
883        &self.file_path
884    }
885
886    /// Handle of the file to read.
887    pub(crate) fn file_handle(&self) -> &FileHandle {
888        &self.file_handle
889    }
890
891    pub(crate) fn parquet_metadata(&self) -> &Arc<ParquetMetaData> {
892        &self.parquet_meta
893    }
894
895    pub(crate) fn cache_strategy(&self) -> &CacheStrategy {
896        &self.cache_strategy
897    }
898
899    /// Builds a [ParquetRecordBatchReader] to read the row group at `row_group_idx`.
900    pub(crate) async fn build(
901        &self,
902        row_group_idx: usize,
903        row_selection: Option<RowSelection>,
904    ) -> Result<ParquetRecordBatchReader> {
905        let mut row_group = InMemoryRowGroup::create(
906            self.file_handle.region_id(),
907            self.file_handle.file_id(),
908            &self.parquet_meta,
909            row_group_idx,
910            self.cache_strategy.clone(),
911            &self.file_path,
912            self.object_store.clone(),
913        );
914        // Fetches data into memory.
915        row_group
916            .fetch(&self.projection, row_selection.as_ref())
917            .await
918            .context(ReadParquetSnafu {
919                path: &self.file_path,
920            })?;
921
922        // Builds the parquet reader.
923        // Now the row selection is None.
924        ParquetRecordBatchReader::try_new_with_row_groups(
925            &self.field_levels,
926            &row_group,
927            DEFAULT_READ_BATCH_SIZE,
928            row_selection,
929        )
930        .context(ReadParquetSnafu {
931            path: &self.file_path,
932        })
933    }
934}
935
936/// The state of a [ParquetReader].
937enum ReaderState {
938    /// The reader is reading a row group.
939    Readable(PruneReader),
940    /// The reader is exhausted.
941    Exhausted(ReaderMetrics),
942}
943
944impl ReaderState {
945    /// Returns the metrics of the reader.
946    fn metrics(&self) -> ReaderMetrics {
947        match self {
948            ReaderState::Readable(reader) => reader.metrics(),
949            ReaderState::Exhausted(m) => m.clone(),
950        }
951    }
952}
953
954/// The filter to evaluate or the prune result of the default value.
955pub(crate) enum MaybeFilter {
956    /// The filter to evaluate.
957    Filter(SimpleFilterEvaluator),
958    /// The filter matches the default value.
959    Matched,
960    /// The filter is pruned.
961    Pruned,
962}
963
964/// Context to evaluate the column filter for a parquet file.
965pub(crate) struct SimpleFilterContext {
966    /// Filter to evaluate.
967    filter: MaybeFilter,
968    /// Id of the column to evaluate.
969    column_id: ColumnId,
970    /// Semantic type of the column.
971    semantic_type: SemanticType,
972    /// The data type of the column.
973    data_type: ConcreteDataType,
974}
975
976impl SimpleFilterContext {
977    /// Creates a context for the `expr`.
978    ///
979    /// Returns None if the column to filter doesn't exist in the SST metadata or the
980    /// expected metadata.
981    pub(crate) fn new_opt(
982        sst_meta: &RegionMetadataRef,
983        expected_meta: Option<&RegionMetadata>,
984        expr: &Expr,
985    ) -> Option<Self> {
986        let filter = SimpleFilterEvaluator::try_new(expr)?;
987        let (column_metadata, maybe_filter) = match expected_meta {
988            Some(meta) => {
989                // Gets the column metadata from the expected metadata.
990                let column = meta.column_by_name(filter.column_name())?;
991                // Checks if the column is present in the SST metadata. We still uses the
992                // column from the expected metadata.
993                match sst_meta.column_by_id(column.column_id) {
994                    Some(sst_column) => {
995                        debug_assert_eq!(column.semantic_type, sst_column.semantic_type);
996
997                        (column, MaybeFilter::Filter(filter))
998                    }
999                    None => {
1000                        // If the column is not present in the SST metadata, we evaluate the filter
1001                        // against the default value of the column.
1002                        // If we can't evaluate the filter, we return None.
1003                        if pruned_by_default(&filter, column)? {
1004                            (column, MaybeFilter::Pruned)
1005                        } else {
1006                            (column, MaybeFilter::Matched)
1007                        }
1008                    }
1009                }
1010            }
1011            None => {
1012                let column = sst_meta.column_by_name(filter.column_name())?;
1013                (column, MaybeFilter::Filter(filter))
1014            }
1015        };
1016
1017        Some(Self {
1018            filter: maybe_filter,
1019            column_id: column_metadata.column_id,
1020            semantic_type: column_metadata.semantic_type,
1021            data_type: column_metadata.column_schema.data_type.clone(),
1022        })
1023    }
1024
1025    /// Returns the filter to evaluate.
1026    pub(crate) fn filter(&self) -> &MaybeFilter {
1027        &self.filter
1028    }
1029
1030    /// Returns the column id.
1031    pub(crate) fn column_id(&self) -> ColumnId {
1032        self.column_id
1033    }
1034
1035    /// Returns the semantic type of the column.
1036    pub(crate) fn semantic_type(&self) -> SemanticType {
1037        self.semantic_type
1038    }
1039
1040    /// Returns the data type of the column.
1041    pub(crate) fn data_type(&self) -> &ConcreteDataType {
1042        &self.data_type
1043    }
1044}
1045
1046/// Prune a column by its default value.
1047/// Returns false if we can't create the default value or evaluate the filter.
1048fn pruned_by_default(filter: &SimpleFilterEvaluator, column: &ColumnMetadata) -> Option<bool> {
1049    let value = column.column_schema.create_default().ok().flatten()?;
1050    let scalar_value = value
1051        .try_to_scalar_value(&column.column_schema.data_type)
1052        .ok()?;
1053    let matches = filter.evaluate_scalar(&scalar_value).ok()?;
1054    Some(!matches)
1055}
1056
1057/// Parquet batch reader to read our SST format.
1058pub struct ParquetReader {
1059    /// File range context.
1060    context: FileRangeContextRef,
1061    /// Row group selection to read.
1062    selection: RowGroupSelection,
1063    /// Reader of current row group.
1064    reader_state: ReaderState,
1065}
1066
1067#[async_trait]
1068impl BatchReader for ParquetReader {
1069    async fn next_batch(&mut self) -> Result<Option<Batch>> {
1070        let ReaderState::Readable(reader) = &mut self.reader_state else {
1071            return Ok(None);
1072        };
1073
1074        // We don't collect the elapsed time if the reader returns an error.
1075        if let Some(batch) = reader.next_batch().await? {
1076            return Ok(Some(batch));
1077        }
1078
1079        // No more items in current row group, reads next row group.
1080        while let Some((row_group_idx, row_selection)) = self.selection.pop_first() {
1081            let parquet_reader = self
1082                .context
1083                .reader_builder()
1084                .build(row_group_idx, Some(row_selection))
1085                .await?;
1086
1087            // Resets the parquet reader.
1088            reader.reset_source(Source::RowGroup(RowGroupReader::new(
1089                self.context.clone(),
1090                parquet_reader,
1091            )));
1092            if let Some(batch) = reader.next_batch().await? {
1093                return Ok(Some(batch));
1094            }
1095        }
1096
1097        // The reader is exhausted.
1098        self.reader_state = ReaderState::Exhausted(reader.metrics().clone());
1099        Ok(None)
1100    }
1101}
1102
1103impl Drop for ParquetReader {
1104    fn drop(&mut self) {
1105        let metrics = self.reader_state.metrics();
1106        debug!(
1107            "Read parquet {} {}, range: {:?}, {}/{} row groups, metrics: {:?}",
1108            self.context.reader_builder().file_handle.region_id(),
1109            self.context.reader_builder().file_handle.file_id(),
1110            self.context.reader_builder().file_handle.time_range(),
1111            metrics.filter_metrics.rg_total
1112                - metrics.filter_metrics.rg_inverted_filtered
1113                - metrics.filter_metrics.rg_minmax_filtered
1114                - metrics.filter_metrics.rg_fulltext_filtered
1115                - metrics.filter_metrics.rg_bloom_filtered,
1116            metrics.filter_metrics.rg_total,
1117            metrics
1118        );
1119
1120        // Report metrics.
1121        READ_STAGE_ELAPSED
1122            .with_label_values(&["build_parquet_reader"])
1123            .observe(metrics.build_cost.as_secs_f64());
1124        READ_STAGE_ELAPSED
1125            .with_label_values(&["scan_row_groups"])
1126            .observe(metrics.scan_cost.as_secs_f64());
1127        metrics.observe_rows("parquet_reader");
1128        metrics.filter_metrics.observe();
1129    }
1130}
1131
1132impl ParquetReader {
1133    /// Creates a new reader.
1134    async fn new(context: FileRangeContextRef, mut selection: RowGroupSelection) -> Result<Self> {
1135        // No more items in current row group, reads next row group.
1136        let reader_state = if let Some((row_group_idx, row_selection)) = selection.pop_first() {
1137            let parquet_reader = context
1138                .reader_builder()
1139                .build(row_group_idx, Some(row_selection))
1140                .await?;
1141            ReaderState::Readable(PruneReader::new_with_row_group_reader(
1142                context.clone(),
1143                RowGroupReader::new(context.clone(), parquet_reader),
1144            ))
1145        } else {
1146            ReaderState::Exhausted(ReaderMetrics::default())
1147        };
1148
1149        Ok(ParquetReader {
1150            context,
1151            selection,
1152            reader_state,
1153        })
1154    }
1155
1156    /// Returns the metadata of the SST.
1157    pub fn metadata(&self) -> &RegionMetadataRef {
1158        self.context.read_format().metadata()
1159    }
1160
1161    #[cfg(test)]
1162    pub fn parquet_metadata(&self) -> Arc<ParquetMetaData> {
1163        self.context.reader_builder().parquet_meta.clone()
1164    }
1165}
1166
1167/// RowGroupReaderContext represents the fields that cannot be shared
1168/// between different `RowGroupReader`s.
1169pub(crate) trait RowGroupReaderContext: Send {
1170    fn map_result(
1171        &self,
1172        result: std::result::Result<Option<RecordBatch>, ArrowError>,
1173    ) -> Result<Option<RecordBatch>>;
1174
1175    fn read_format(&self) -> &ReadFormat;
1176}
1177
1178impl RowGroupReaderContext for FileRangeContextRef {
1179    fn map_result(
1180        &self,
1181        result: std::result::Result<Option<RecordBatch>, ArrowError>,
1182    ) -> Result<Option<RecordBatch>> {
1183        result.context(ArrowReaderSnafu {
1184            path: self.file_path(),
1185        })
1186    }
1187
1188    fn read_format(&self) -> &ReadFormat {
1189        self.as_ref().read_format()
1190    }
1191}
1192
1193/// [RowGroupReader] that reads from [FileRange].
1194pub(crate) type RowGroupReader = RowGroupReaderBase<FileRangeContextRef>;
1195
1196impl RowGroupReader {
1197    /// Creates a new reader from file range.
1198    pub(crate) fn new(context: FileRangeContextRef, reader: ParquetRecordBatchReader) -> Self {
1199        Self {
1200            context,
1201            reader,
1202            batches: VecDeque::new(),
1203            metrics: ReaderMetrics::default(),
1204        }
1205    }
1206}
1207
1208/// Reader to read a row group of a parquet file.
1209pub(crate) struct RowGroupReaderBase<T> {
1210    /// Context of [RowGroupReader] so adapts to different underlying implementation.
1211    context: T,
1212    /// Inner parquet reader.
1213    reader: ParquetRecordBatchReader,
1214    /// Buffered batches to return.
1215    batches: VecDeque<Batch>,
1216    /// Local scan metrics.
1217    metrics: ReaderMetrics,
1218}
1219
1220impl<T> RowGroupReaderBase<T>
1221where
1222    T: RowGroupReaderContext,
1223{
1224    /// Creates a new reader.
1225    pub(crate) fn create(context: T, reader: ParquetRecordBatchReader) -> Self {
1226        Self {
1227            context,
1228            reader,
1229            batches: VecDeque::new(),
1230            metrics: ReaderMetrics::default(),
1231        }
1232    }
1233
1234    /// Gets the metrics.
1235    pub(crate) fn metrics(&self) -> &ReaderMetrics {
1236        &self.metrics
1237    }
1238
1239    /// Gets [ReadFormat] of underlying reader.
1240    pub(crate) fn read_format(&self) -> &ReadFormat {
1241        self.context.read_format()
1242    }
1243
1244    /// Tries to fetch next [RecordBatch] from the reader.
1245    fn fetch_next_record_batch(&mut self) -> Result<Option<RecordBatch>> {
1246        self.context.map_result(self.reader.next().transpose())
1247    }
1248
1249    /// Returns the next [Batch].
1250    pub(crate) fn next_inner(&mut self) -> Result<Option<Batch>> {
1251        let scan_start = Instant::now();
1252        if let Some(batch) = self.batches.pop_front() {
1253            self.metrics.num_rows += batch.num_rows();
1254            self.metrics.scan_cost += scan_start.elapsed();
1255            return Ok(Some(batch));
1256        }
1257
1258        // We need to fetch next record batch and convert it to batches.
1259        while self.batches.is_empty() {
1260            let Some(record_batch) = self.fetch_next_record_batch()? else {
1261                self.metrics.scan_cost += scan_start.elapsed();
1262                return Ok(None);
1263            };
1264            self.metrics.num_record_batches += 1;
1265
1266            self.context
1267                .read_format()
1268                .convert_record_batch(&record_batch, &mut self.batches)?;
1269            self.metrics.num_batches += self.batches.len();
1270        }
1271        let batch = self.batches.pop_front();
1272        self.metrics.num_rows += batch.as_ref().map(|b| b.num_rows()).unwrap_or(0);
1273        self.metrics.scan_cost += scan_start.elapsed();
1274        Ok(batch)
1275    }
1276}
1277
1278#[async_trait::async_trait]
1279impl<T> BatchReader for RowGroupReaderBase<T>
1280where
1281    T: RowGroupReaderContext,
1282{
1283    async fn next_batch(&mut self) -> Result<Option<Batch>> {
1284        self.next_inner()
1285    }
1286}