mito2/sst/parquet/file_range.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Structs and functions for reading ranges from a parquet file. A file range
//! is usually a row group in a parquet file.
use std::ops::BitAnd;
use std::sync::Arc;
use api::v1::{OpType, SemanticType};
use common_telemetry::error;
use datatypes::arrow::array::BooleanArray;
use datatypes::arrow::buffer::BooleanBuffer;
use parquet::arrow::arrow_reader::RowSelection;
use snafu::{OptionExt, ResultExt};
use store_api::storage::TimeSeriesRowSelector;
use crate::error::{
DecodeStatsSnafu, FieldTypeMismatchSnafu, FilterRecordBatchSnafu, Result, StatsNotPresentSnafu,
};
use crate::read::compat::CompatBatch;
use crate::read::last_row::RowGroupLastRowCachedReader;
use crate::read::prune::PruneReader;
use crate::read::Batch;
use crate::row_converter::{CompositeValues, PrimaryKeyCodec};
use crate::sst::file::FileHandle;
use crate::sst::parquet::format::ReadFormat;
use crate::sst::parquet::reader::{RowGroupReader, RowGroupReaderBuilder, SimpleFilterContext};
/// A range of a parquet SST. Now it is a row group.
/// We can read different file ranges in parallel.
#[derive(Clone)]
pub struct FileRange {
/// Shared context.
context: FileRangeContextRef,
/// Index of the row group in the SST.
row_group_idx: usize,
/// Row selection for the row group. `None` means all rows.
row_selection: Option<RowSelection>,
}
impl FileRange {
/// Creates a new [FileRange].
pub(crate) fn new(
context: FileRangeContextRef,
row_group_idx: usize,
row_selection: Option<RowSelection>,
) -> Self {
Self {
context,
row_group_idx,
row_selection,
}
}
/// Returns true if [FileRange] selects all rows in row group.
fn select_all(&self) -> bool {
let rows_in_group = self
.context
.reader_builder
.parquet_metadata()
.row_group(self.row_group_idx)
.num_rows();
let Some(row_selection) = &self.row_selection else {
return true;
};
row_selection.row_count() == rows_in_group as usize
}
/// Returns a reader to read the [FileRange].
pub(crate) async fn reader(
&self,
selector: Option<TimeSeriesRowSelector>,
) -> Result<PruneReader> {
let parquet_reader = self
.context
.reader_builder
.build(self.row_group_idx, self.row_selection.clone())
.await?;
let use_last_row_reader = if selector
.map(|s| s == TimeSeriesRowSelector::LastRow)
.unwrap_or(false)
{
// Only use LastRowReader if row group does not contain DELETE
// and all rows are selected.
let put_only = !self
.context
.contains_delete(self.row_group_idx)
.inspect_err(|e| {
error!(e; "Failed to decode min value of op_type, fallback to RowGroupReader");
})
.unwrap_or(true);
put_only && self.select_all()
} else {
// No selector provided, use RowGroupReader
false
};
let prune_reader = if use_last_row_reader {
// Row group is PUT only, use LastRowReader to skip unnecessary rows.
let reader = RowGroupLastRowCachedReader::new(
self.file_handle().file_id(),
self.row_group_idx,
self.context.reader_builder.cache_strategy().clone(),
RowGroupReader::new(self.context.clone(), parquet_reader),
);
PruneReader::new_with_last_row_reader(self.context.clone(), reader)
} else {
// Row group contains DELETE, fallback to default reader.
PruneReader::new_with_row_group_reader(
self.context.clone(),
RowGroupReader::new(self.context.clone(), parquet_reader),
)
};
Ok(prune_reader)
}
/// Returns the helper to compat batches.
pub(crate) fn compat_batch(&self) -> Option<&CompatBatch> {
self.context.compat_batch()
}
/// Returns the file handle of the file range.
pub(crate) fn file_handle(&self) -> &FileHandle {
self.context.reader_builder.file_handle()
}
}
/// Context shared by ranges of the same parquet SST.
pub(crate) struct FileRangeContext {
/// Row group reader builder for the file.
reader_builder: RowGroupReaderBuilder,
/// Base of the context.
base: RangeBase,
}
pub(crate) type FileRangeContextRef = Arc<FileRangeContext>;
impl FileRangeContext {
/// Creates a new [FileRangeContext].
pub(crate) fn new(
reader_builder: RowGroupReaderBuilder,
filters: Vec<SimpleFilterContext>,
read_format: ReadFormat,
codec: Arc<dyn PrimaryKeyCodec>,
) -> Self {
Self {
reader_builder,
base: RangeBase {
filters,
read_format,
codec,
compat_batch: None,
},
}
}
/// Returns the path of the file to read.
pub(crate) fn file_path(&self) -> &str {
self.reader_builder.file_path()
}
/// Returns filters pushed down.
pub(crate) fn filters(&self) -> &[SimpleFilterContext] {
&self.base.filters
}
/// Returns the format helper.
pub(crate) fn read_format(&self) -> &ReadFormat {
&self.base.read_format
}
/// Returns the reader builder.
pub(crate) fn reader_builder(&self) -> &RowGroupReaderBuilder {
&self.reader_builder
}
/// Returns the helper to compat batches.
pub(crate) fn compat_batch(&self) -> Option<&CompatBatch> {
self.base.compat_batch.as_ref()
}
/// Sets the `CompatBatch` to the context.
pub(crate) fn set_compat_batch(&mut self, compat: Option<CompatBatch>) {
self.base.compat_batch = compat;
}
/// TRY THE BEST to perform pushed down predicate precisely on the input batch.
/// Return the filtered batch. If the entire batch is filtered out, return None.
pub(crate) fn precise_filter(&self, input: Batch) -> Result<Option<Batch>> {
self.base.precise_filter(input)
}
//// Decodes parquet metadata and finds if row group contains delete op.
pub(crate) fn contains_delete(&self, row_group_index: usize) -> Result<bool> {
let metadata = self.reader_builder.parquet_metadata();
let row_group_metadata = &metadata.row_groups()[row_group_index];
// safety: The last column of SST must be op_type
let column_metadata = &row_group_metadata.columns().last().unwrap();
let stats = column_metadata.statistics().context(StatsNotPresentSnafu {
file_path: self.reader_builder.file_path(),
})?;
stats
.min_bytes_opt()
.context(StatsNotPresentSnafu {
file_path: self.reader_builder.file_path(),
})?
.try_into()
.map(i32::from_le_bytes)
.map(|min_op_type| min_op_type == OpType::Delete as i32)
.ok()
.context(DecodeStatsSnafu {
file_path: self.reader_builder.file_path(),
})
}
}
/// Common fields for a range to read and filter batches.
pub(crate) struct RangeBase {
/// Filters pushed down.
pub(crate) filters: Vec<SimpleFilterContext>,
/// Helper to read the SST.
pub(crate) read_format: ReadFormat,
/// Decoder for primary keys
pub(crate) codec: Arc<dyn PrimaryKeyCodec>,
/// Optional helper to compat batches.
pub(crate) compat_batch: Option<CompatBatch>,
}
impl RangeBase {
/// TRY THE BEST to perform pushed down predicate precisely on the input batch.
/// Return the filtered batch. If the entire batch is filtered out, return None.
///
/// Supported filter expr type is defined in [SimpleFilterEvaluator].
///
/// When a filter is referencing primary key column, this method will decode
/// the primary key and put it into the batch.
pub(crate) fn precise_filter(&self, mut input: Batch) -> Result<Option<Batch>> {
let mut mask = BooleanBuffer::new_set(input.num_rows());
// Run filter one by one and combine them result
// TODO(ruihang): run primary key filter first. It may short circuit other filters
for filter in &self.filters {
let result = match filter.semantic_type() {
SemanticType::Tag => {
let pk_values = if let Some(pk_values) = input.pk_values() {
pk_values
} else {
input.set_pk_values(self.codec.decode(input.primary_key())?);
input.pk_values().unwrap()
};
let pk_value = match pk_values {
CompositeValues::Dense(v) => {
// Safety: this is a primary key
let pk_index = self
.read_format
.metadata()
.primary_key_index(filter.column_id())
.unwrap();
v[pk_index]
.1
.try_to_scalar_value(filter.data_type())
.context(FieldTypeMismatchSnafu)?
}
CompositeValues::Sparse(v) => {
let v = v.get_or_null(filter.column_id());
v.try_to_scalar_value(filter.data_type())
.context(FieldTypeMismatchSnafu)?
}
};
if filter
.filter()
.evaluate_scalar(&pk_value)
.context(FilterRecordBatchSnafu)?
{
continue;
} else {
// PK not match means the entire batch is filtered out.
return Ok(None);
}
}
SemanticType::Field => {
let Some(field_index) = self.read_format.field_index_by_id(filter.column_id())
else {
continue;
};
let field_col = &input.fields()[field_index].data;
filter
.filter()
.evaluate_vector(field_col)
.context(FilterRecordBatchSnafu)?
}
SemanticType::Timestamp => filter
.filter()
.evaluate_vector(input.timestamps())
.context(FilterRecordBatchSnafu)?,
};
mask = mask.bitand(&result);
}
input.filter(&BooleanArray::from(mask).into())?;
Ok(Some(input))
}
}