mito2/sst/parquet/
file_range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Structs and functions for reading ranges from a parquet file. A file range
//! is usually a row group in a parquet file.

use std::ops::BitAnd;
use std::sync::Arc;

use api::v1::{OpType, SemanticType};
use common_telemetry::error;
use datatypes::arrow::array::BooleanArray;
use datatypes::arrow::buffer::BooleanBuffer;
use parquet::arrow::arrow_reader::RowSelection;
use snafu::{OptionExt, ResultExt};
use store_api::storage::TimeSeriesRowSelector;

use crate::error::{
    DecodeStatsSnafu, FieldTypeMismatchSnafu, FilterRecordBatchSnafu, Result, StatsNotPresentSnafu,
};
use crate::read::compat::CompatBatch;
use crate::read::last_row::RowGroupLastRowCachedReader;
use crate::read::prune::PruneReader;
use crate::read::Batch;
use crate::row_converter::{CompositeValues, PrimaryKeyCodec};
use crate::sst::file::FileHandle;
use crate::sst::parquet::format::ReadFormat;
use crate::sst::parquet::reader::{RowGroupReader, RowGroupReaderBuilder, SimpleFilterContext};

/// A range of a parquet SST. Now it is a row group.
/// We can read different file ranges in parallel.
#[derive(Clone)]
pub struct FileRange {
    /// Shared context.
    context: FileRangeContextRef,
    /// Index of the row group in the SST.
    row_group_idx: usize,
    /// Row selection for the row group. `None` means all rows.
    row_selection: Option<RowSelection>,
}

impl FileRange {
    /// Creates a new [FileRange].
    pub(crate) fn new(
        context: FileRangeContextRef,
        row_group_idx: usize,
        row_selection: Option<RowSelection>,
    ) -> Self {
        Self {
            context,
            row_group_idx,
            row_selection,
        }
    }

    /// Returns true if [FileRange] selects all rows in row group.
    fn select_all(&self) -> bool {
        let rows_in_group = self
            .context
            .reader_builder
            .parquet_metadata()
            .row_group(self.row_group_idx)
            .num_rows();

        let Some(row_selection) = &self.row_selection else {
            return true;
        };
        row_selection.row_count() == rows_in_group as usize
    }

    /// Returns a reader to read the [FileRange].
    pub(crate) async fn reader(
        &self,
        selector: Option<TimeSeriesRowSelector>,
    ) -> Result<PruneReader> {
        let parquet_reader = self
            .context
            .reader_builder
            .build(self.row_group_idx, self.row_selection.clone())
            .await?;

        let use_last_row_reader = if selector
            .map(|s| s == TimeSeriesRowSelector::LastRow)
            .unwrap_or(false)
        {
            // Only use LastRowReader if row group does not contain DELETE
            // and all rows are selected.
            let put_only = !self
                .context
                .contains_delete(self.row_group_idx)
                .inspect_err(|e| {
                    error!(e; "Failed to decode min value of op_type, fallback to RowGroupReader");
                })
                .unwrap_or(true);
            put_only && self.select_all()
        } else {
            // No selector provided, use RowGroupReader
            false
        };

        let prune_reader = if use_last_row_reader {
            // Row group is PUT only, use LastRowReader to skip unnecessary rows.
            let reader = RowGroupLastRowCachedReader::new(
                self.file_handle().file_id(),
                self.row_group_idx,
                self.context.reader_builder.cache_strategy().clone(),
                RowGroupReader::new(self.context.clone(), parquet_reader),
            );
            PruneReader::new_with_last_row_reader(self.context.clone(), reader)
        } else {
            // Row group contains DELETE, fallback to default reader.
            PruneReader::new_with_row_group_reader(
                self.context.clone(),
                RowGroupReader::new(self.context.clone(), parquet_reader),
            )
        };

        Ok(prune_reader)
    }

    /// Returns the helper to compat batches.
    pub(crate) fn compat_batch(&self) -> Option<&CompatBatch> {
        self.context.compat_batch()
    }

    /// Returns the file handle of the file range.
    pub(crate) fn file_handle(&self) -> &FileHandle {
        self.context.reader_builder.file_handle()
    }
}

/// Context shared by ranges of the same parquet SST.
pub(crate) struct FileRangeContext {
    /// Row group reader builder for the file.
    reader_builder: RowGroupReaderBuilder,
    /// Base of the context.
    base: RangeBase,
}

pub(crate) type FileRangeContextRef = Arc<FileRangeContext>;

impl FileRangeContext {
    /// Creates a new [FileRangeContext].
    pub(crate) fn new(
        reader_builder: RowGroupReaderBuilder,
        filters: Vec<SimpleFilterContext>,
        read_format: ReadFormat,
        codec: Arc<dyn PrimaryKeyCodec>,
    ) -> Self {
        Self {
            reader_builder,
            base: RangeBase {
                filters,
                read_format,
                codec,
                compat_batch: None,
            },
        }
    }

    /// Returns the path of the file to read.
    pub(crate) fn file_path(&self) -> &str {
        self.reader_builder.file_path()
    }

    /// Returns filters pushed down.
    pub(crate) fn filters(&self) -> &[SimpleFilterContext] {
        &self.base.filters
    }

    /// Returns the format helper.
    pub(crate) fn read_format(&self) -> &ReadFormat {
        &self.base.read_format
    }

    /// Returns the reader builder.
    pub(crate) fn reader_builder(&self) -> &RowGroupReaderBuilder {
        &self.reader_builder
    }

    /// Returns the helper to compat batches.
    pub(crate) fn compat_batch(&self) -> Option<&CompatBatch> {
        self.base.compat_batch.as_ref()
    }

    /// Sets the `CompatBatch` to the context.
    pub(crate) fn set_compat_batch(&mut self, compat: Option<CompatBatch>) {
        self.base.compat_batch = compat;
    }

    /// TRY THE BEST to perform pushed down predicate precisely on the input batch.
    /// Return the filtered batch. If the entire batch is filtered out, return None.
    pub(crate) fn precise_filter(&self, input: Batch) -> Result<Option<Batch>> {
        self.base.precise_filter(input)
    }

    //// Decodes parquet metadata and finds if row group contains delete op.
    pub(crate) fn contains_delete(&self, row_group_index: usize) -> Result<bool> {
        let metadata = self.reader_builder.parquet_metadata();
        let row_group_metadata = &metadata.row_groups()[row_group_index];

        // safety: The last column of SST must be op_type
        let column_metadata = &row_group_metadata.columns().last().unwrap();
        let stats = column_metadata.statistics().context(StatsNotPresentSnafu {
            file_path: self.reader_builder.file_path(),
        })?;
        stats
            .min_bytes_opt()
            .context(StatsNotPresentSnafu {
                file_path: self.reader_builder.file_path(),
            })?
            .try_into()
            .map(i32::from_le_bytes)
            .map(|min_op_type| min_op_type == OpType::Delete as i32)
            .ok()
            .context(DecodeStatsSnafu {
                file_path: self.reader_builder.file_path(),
            })
    }
}

/// Common fields for a range to read and filter batches.
pub(crate) struct RangeBase {
    /// Filters pushed down.
    pub(crate) filters: Vec<SimpleFilterContext>,
    /// Helper to read the SST.
    pub(crate) read_format: ReadFormat,
    /// Decoder for primary keys
    pub(crate) codec: Arc<dyn PrimaryKeyCodec>,
    /// Optional helper to compat batches.
    pub(crate) compat_batch: Option<CompatBatch>,
}

impl RangeBase {
    /// TRY THE BEST to perform pushed down predicate precisely on the input batch.
    /// Return the filtered batch. If the entire batch is filtered out, return None.
    ///
    /// Supported filter expr type is defined in [SimpleFilterEvaluator].
    ///
    /// When a filter is referencing primary key column, this method will decode
    /// the primary key and put it into the batch.
    pub(crate) fn precise_filter(&self, mut input: Batch) -> Result<Option<Batch>> {
        let mut mask = BooleanBuffer::new_set(input.num_rows());

        // Run filter one by one and combine them result
        // TODO(ruihang): run primary key filter first. It may short circuit other filters
        for filter in &self.filters {
            let result = match filter.semantic_type() {
                SemanticType::Tag => {
                    let pk_values = if let Some(pk_values) = input.pk_values() {
                        pk_values
                    } else {
                        input.set_pk_values(self.codec.decode(input.primary_key())?);
                        input.pk_values().unwrap()
                    };
                    let pk_value = match pk_values {
                        CompositeValues::Dense(v) => {
                            // Safety: this is a primary key
                            let pk_index = self
                                .read_format
                                .metadata()
                                .primary_key_index(filter.column_id())
                                .unwrap();
                            v[pk_index]
                                .1
                                .try_to_scalar_value(filter.data_type())
                                .context(FieldTypeMismatchSnafu)?
                        }
                        CompositeValues::Sparse(v) => {
                            let v = v.get_or_null(filter.column_id());
                            v.try_to_scalar_value(filter.data_type())
                                .context(FieldTypeMismatchSnafu)?
                        }
                    };
                    if filter
                        .filter()
                        .evaluate_scalar(&pk_value)
                        .context(FilterRecordBatchSnafu)?
                    {
                        continue;
                    } else {
                        // PK not match means the entire batch is filtered out.
                        return Ok(None);
                    }
                }
                SemanticType::Field => {
                    let Some(field_index) = self.read_format.field_index_by_id(filter.column_id())
                    else {
                        continue;
                    };
                    let field_col = &input.fields()[field_index].data;
                    filter
                        .filter()
                        .evaluate_vector(field_col)
                        .context(FilterRecordBatchSnafu)?
                }
                SemanticType::Timestamp => filter
                    .filter()
                    .evaluate_vector(input.timestamps())
                    .context(FilterRecordBatchSnafu)?,
            };

            mask = mask.bitand(&result);
        }

        input.filter(&BooleanArray::from(mask).into())?;

        Ok(Some(input))
    }
}