mito2/read/range.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Structs for partition ranges.
use std::collections::BTreeMap;
use std::sync::{Arc, Mutex};
use common_time::Timestamp;
use parquet::arrow::arrow_reader::RowSelection;
use smallvec::{smallvec, SmallVec};
use store_api::region_engine::PartitionRange;
use store_api::storage::TimeSeriesDistribution;
use crate::cache::CacheStrategy;
use crate::error::Result;
use crate::memtable::{MemtableRange, MemtableRanges, MemtableStats};
use crate::read::scan_region::ScanInput;
use crate::sst::file::{overlaps, FileHandle, FileTimeRange};
use crate::sst::parquet::file_range::{FileRange, FileRangeContextRef};
use crate::sst::parquet::format::parquet_row_group_time_range;
use crate::sst::parquet::reader::ReaderMetrics;
use crate::sst::parquet::DEFAULT_ROW_GROUP_SIZE;
const ALL_ROW_GROUPS: i64 = -1;
/// Index and metadata for a memtable or file.
#[derive(Debug, Clone, Copy, PartialEq)]
pub(crate) struct SourceIndex {
/// Index of the memtable and file.
pub(crate) index: usize,
/// Total number of row groups in this source. 0 if the metadata
/// is unavailable. We use this to split files.
pub(crate) num_row_groups: u64,
}
/// Index to access a row group.
#[derive(Debug, Clone, Copy, PartialEq)]
pub(crate) struct RowGroupIndex {
/// Index to the memtable/file.
pub(crate) index: usize,
/// Row group index in the file.
/// Negative index indicates all row groups.
pub(crate) row_group_index: i64,
}
/// Meta data of a partition range.
/// If the scanner is [UnorderedScan], each meta only has one row group or memtable.
/// If the scanner is [SeqScan], each meta may have multiple row groups and memtables.
#[derive(Debug, PartialEq)]
pub(crate) struct RangeMeta {
/// The time range of the range.
pub(crate) time_range: FileTimeRange,
/// Indices to memtables or files.
pub(crate) indices: SmallVec<[SourceIndex; 2]>,
/// Indices to memtable/file row groups that this range scans.
pub(crate) row_group_indices: SmallVec<[RowGroupIndex; 2]>,
/// Estimated number of rows in the range. This can be 0 if the statistics are not available.
pub(crate) num_rows: usize,
}
impl RangeMeta {
/// Creates a [PartitionRange] with specific identifier.
/// It converts the inclusive max timestamp to exclusive end timestamp.
pub(crate) fn new_partition_range(&self, identifier: usize) -> PartitionRange {
PartitionRange {
start: self.time_range.0,
end: Timestamp::new(
// The i64::MAX timestamp may be invisible but we don't guarantee to support this
// value now.
self.time_range
.1
.value()
.checked_add(1)
.unwrap_or(self.time_range.1.value()),
self.time_range.1.unit(),
),
num_rows: self.num_rows,
identifier,
}
}
/// Creates a list of ranges from the `input` for seq scan.
/// If `compaction` is true, it doesn't split the ranges.
pub(crate) fn seq_scan_ranges(input: &ScanInput, compaction: bool) -> Vec<RangeMeta> {
let mut ranges = Vec::with_capacity(input.memtables.len() + input.files.len());
Self::push_seq_mem_ranges(&input.memtables, &mut ranges);
Self::push_seq_file_ranges(input.memtables.len(), &input.files, &mut ranges);
let ranges = group_ranges_for_seq_scan(ranges);
if compaction || input.distribution == Some(TimeSeriesDistribution::PerSeries) {
// We don't split ranges in compaction or TimeSeriesDistribution::PerSeries.
return ranges;
}
maybe_split_ranges_for_seq_scan(ranges)
}
/// Creates a list of ranges from the `input` for unordered scan.
pub(crate) fn unordered_scan_ranges(input: &ScanInput) -> Vec<RangeMeta> {
let mut ranges = Vec::with_capacity(input.memtables.len() + input.files.len());
Self::push_unordered_mem_ranges(&input.memtables, &mut ranges);
Self::push_unordered_file_ranges(
input.memtables.len(),
&input.files,
&input.cache_strategy,
&mut ranges,
);
ranges
}
/// Returns true if the time range of given `meta` overlaps with the time range of this meta.
fn overlaps(&self, meta: &RangeMeta) -> bool {
overlaps(&self.time_range, &meta.time_range)
}
/// Merges given `meta` to this meta.
/// It assumes that the time ranges overlap and they don't have the same file or memtable index.
fn merge(&mut self, mut other: RangeMeta) {
debug_assert!(self.overlaps(&other));
debug_assert!(self.indices.iter().all(|idx| !other.indices.contains(idx)));
debug_assert!(self
.row_group_indices
.iter()
.all(|idx| !other.row_group_indices.contains(idx)));
self.time_range = (
self.time_range.0.min(other.time_range.0),
self.time_range.1.max(other.time_range.1),
);
self.indices.append(&mut other.indices);
self.row_group_indices.append(&mut other.row_group_indices);
self.num_rows += other.num_rows;
}
/// Returns true if we can split the range into multiple smaller ranges and
/// still preserve the order for [SeqScan].
fn can_split_preserve_order(&self) -> bool {
self.indices.len() == 1 && self.indices[0].num_row_groups > 1
}
/// Splits the range if it can preserve the order.
fn maybe_split(self, output: &mut Vec<RangeMeta>) {
if self.can_split_preserve_order() {
let num_row_groups = self.indices[0].num_row_groups;
debug_assert_eq!(1, self.row_group_indices.len());
debug_assert_eq!(ALL_ROW_GROUPS, self.row_group_indices[0].row_group_index);
output.reserve(self.row_group_indices.len());
let num_rows = self.num_rows / num_row_groups as usize;
// Splits by row group.
for row_group_index in 0..num_row_groups {
output.push(RangeMeta {
time_range: self.time_range,
indices: self.indices.clone(),
row_group_indices: smallvec![RowGroupIndex {
index: self.indices[0].index,
row_group_index: row_group_index as i64,
}],
num_rows,
});
}
} else {
output.push(self);
}
}
fn push_unordered_mem_ranges(memtables: &[MemRangeBuilder], ranges: &mut Vec<RangeMeta>) {
// For append mode, we can parallelize reading memtables.
for (memtable_index, memtable) in memtables.iter().enumerate() {
let stats = memtable.stats();
let Some(time_range) = stats.time_range() else {
continue;
};
for row_group_index in 0..stats.num_ranges() {
let num_rows = stats.num_rows() / stats.num_ranges();
ranges.push(RangeMeta {
time_range,
indices: smallvec![SourceIndex {
index: memtable_index,
num_row_groups: stats.num_ranges() as u64,
}],
row_group_indices: smallvec![RowGroupIndex {
index: memtable_index,
row_group_index: row_group_index as i64,
}],
num_rows,
});
}
}
}
fn push_unordered_file_ranges(
num_memtables: usize,
files: &[FileHandle],
cache: &CacheStrategy,
ranges: &mut Vec<RangeMeta>,
) {
// For append mode, we can parallelize reading row groups.
for (i, file) in files.iter().enumerate() {
let file_index = num_memtables + i;
// Get parquet meta from the cache.
let parquet_meta =
cache.get_parquet_meta_data_from_mem_cache(file.region_id(), file.file_id());
if let Some(parquet_meta) = parquet_meta {
// Scans each row group.
for row_group_index in 0..file.meta_ref().num_row_groups {
let time_range = parquet_row_group_time_range(
file.meta_ref(),
&parquet_meta,
row_group_index as usize,
);
let num_rows = parquet_meta.row_group(row_group_index as usize).num_rows();
ranges.push(RangeMeta {
time_range: time_range.unwrap_or_else(|| file.time_range()),
indices: smallvec![SourceIndex {
index: file_index,
num_row_groups: file.meta_ref().num_row_groups,
}],
row_group_indices: smallvec![RowGroupIndex {
index: file_index,
row_group_index: row_group_index as i64,
}],
num_rows: num_rows as usize,
});
}
} else if file.meta_ref().num_row_groups > 0 {
// Scans each row group.
for row_group_index in 0..file.meta_ref().num_row_groups {
ranges.push(RangeMeta {
time_range: file.time_range(),
indices: smallvec![SourceIndex {
index: file_index,
num_row_groups: file.meta_ref().num_row_groups,
}],
row_group_indices: smallvec![RowGroupIndex {
index: file_index,
row_group_index: row_group_index as i64,
}],
num_rows: DEFAULT_ROW_GROUP_SIZE,
});
}
} else {
// If we don't known the number of row groups in advance, scan all row groups.
ranges.push(RangeMeta {
time_range: file.time_range(),
indices: smallvec![SourceIndex {
index: file_index,
num_row_groups: 0,
}],
row_group_indices: smallvec![RowGroupIndex {
index: file_index,
row_group_index: ALL_ROW_GROUPS,
}],
// This may be 0.
num_rows: file.meta_ref().num_rows as usize,
});
}
}
}
fn push_seq_mem_ranges(memtables: &[MemRangeBuilder], ranges: &mut Vec<RangeMeta>) {
// For non append-only mode, each range only contains one memtable by default.
for (i, memtable) in memtables.iter().enumerate() {
let stats = memtable.stats();
let Some(time_range) = stats.time_range() else {
continue;
};
ranges.push(RangeMeta {
time_range,
indices: smallvec![SourceIndex {
index: i,
num_row_groups: stats.num_ranges() as u64,
}],
row_group_indices: smallvec![RowGroupIndex {
index: i,
row_group_index: ALL_ROW_GROUPS,
}],
num_rows: stats.num_rows(),
});
}
}
fn push_seq_file_ranges(
num_memtables: usize,
files: &[FileHandle],
ranges: &mut Vec<RangeMeta>,
) {
// For non append-only mode, each range only contains one file.
for (i, file) in files.iter().enumerate() {
let file_index = num_memtables + i;
ranges.push(RangeMeta {
time_range: file.time_range(),
indices: smallvec![SourceIndex {
index: file_index,
num_row_groups: file.meta_ref().num_row_groups,
}],
row_group_indices: smallvec![RowGroupIndex {
index: file_index,
row_group_index: ALL_ROW_GROUPS,
}],
num_rows: file.meta_ref().num_rows as usize,
});
}
}
}
/// Groups ranges by time range.
/// It assumes each input range only contains a file or a memtable.
fn group_ranges_for_seq_scan(mut ranges: Vec<RangeMeta>) -> Vec<RangeMeta> {
if ranges.is_empty() {
return ranges;
}
// Sorts ranges by time range (start asc, end desc).
ranges.sort_unstable_by(|a, b| {
let l = a.time_range;
let r = b.time_range;
l.0.cmp(&r.0).then_with(|| r.1.cmp(&l.1))
});
let mut range_in_progress = None;
// Parts with exclusive time ranges.
let mut exclusive_ranges = Vec::with_capacity(ranges.len());
for range in ranges {
let Some(mut prev_range) = range_in_progress.take() else {
// This is the new range to process.
range_in_progress = Some(range);
continue;
};
if prev_range.overlaps(&range) {
prev_range.merge(range);
range_in_progress = Some(prev_range);
} else {
exclusive_ranges.push(prev_range);
range_in_progress = Some(range);
}
}
if let Some(range) = range_in_progress {
exclusive_ranges.push(range);
}
exclusive_ranges
}
/// Splits the range into multiple smaller ranges.
/// It assumes the input `ranges` list is created by [group_ranges_for_seq_scan()].
fn maybe_split_ranges_for_seq_scan(ranges: Vec<RangeMeta>) -> Vec<RangeMeta> {
let mut new_ranges = Vec::with_capacity(ranges.len());
for range in ranges {
range.maybe_split(&mut new_ranges);
}
new_ranges
}
/// Builder to create file ranges.
#[derive(Default)]
pub(crate) struct FileRangeBuilder {
/// Context for the file.
/// None indicates nothing to read.
context: Option<FileRangeContextRef>,
/// Row selections for each row group to read.
/// It skips the row group if it is not in the map.
row_groups: BTreeMap<usize, Option<RowSelection>>,
}
impl FileRangeBuilder {
/// Builds a file range builder from context and row groups.
pub(crate) fn new(
context: FileRangeContextRef,
row_groups: BTreeMap<usize, Option<RowSelection>>,
) -> Self {
Self {
context: Some(context),
row_groups,
}
}
/// Builds file ranges to read.
/// Negative `row_group_index` indicates all row groups.
pub(crate) fn build_ranges(&self, row_group_index: i64, ranges: &mut SmallVec<[FileRange; 2]>) {
let Some(context) = self.context.clone() else {
return;
};
if row_group_index >= 0 {
let row_group_index = row_group_index as usize;
// Scans one row group.
let Some(row_selection) = self.row_groups.get(&row_group_index) else {
return;
};
ranges.push(FileRange::new(
context,
row_group_index,
row_selection.clone(),
));
} else {
// Scans all row groups.
ranges.extend(
self.row_groups
.iter()
.map(|(row_group_index, row_selection)| {
FileRange::new(context.clone(), *row_group_index, row_selection.clone())
}),
);
}
}
}
/// Builder to create mem ranges.
pub(crate) struct MemRangeBuilder {
/// Ranges of a memtable.
ranges: MemtableRanges,
}
impl MemRangeBuilder {
/// Builds a mem range builder from row groups.
pub(crate) fn new(ranges: MemtableRanges) -> Self {
Self { ranges }
}
/// Builds mem ranges to read in the memtable.
/// Negative `row_group_index` indicates all row groups.
pub(crate) fn build_ranges(
&self,
row_group_index: i64,
ranges: &mut SmallVec<[MemtableRange; 2]>,
) {
if row_group_index >= 0 {
let row_group_index = row_group_index as usize;
// Scans one row group.
let Some(range) = self.ranges.ranges.get(&row_group_index) else {
return;
};
ranges.push(range.clone());
} else {
ranges.extend(self.ranges.ranges.values().cloned());
}
}
/// Returns the statistics of the memtable.
pub(crate) fn stats(&self) -> &MemtableStats {
&self.ranges.stats
}
}
/// List to manages the builders to create file ranges.
/// Each scan partition should have its own list. Mutex inside this list is used to allow moving
/// the list to different streams in the same partition.
pub(crate) struct RangeBuilderList {
num_memtables: usize,
file_builders: Mutex<Vec<Option<Arc<FileRangeBuilder>>>>,
}
impl RangeBuilderList {
/// Creates a new [ReaderBuilderList] with the given number of memtables and files.
pub(crate) fn new(num_memtables: usize, num_files: usize) -> Self {
let file_builders = (0..num_files).map(|_| None).collect();
Self {
num_memtables,
file_builders: Mutex::new(file_builders),
}
}
/// Builds file ranges to read the row group at `index`.
pub(crate) async fn build_file_ranges(
&self,
input: &ScanInput,
index: RowGroupIndex,
reader_metrics: &mut ReaderMetrics,
) -> Result<SmallVec<[FileRange; 2]>> {
let mut ranges = SmallVec::new();
let file_index = index.index - self.num_memtables;
let builder_opt = self.get_file_builder(file_index);
match builder_opt {
Some(builder) => builder.build_ranges(index.row_group_index, &mut ranges),
None => {
let builder = input.prune_file(file_index, reader_metrics).await?;
builder.build_ranges(index.row_group_index, &mut ranges);
self.set_file_builder(file_index, Arc::new(builder));
}
}
Ok(ranges)
}
fn get_file_builder(&self, index: usize) -> Option<Arc<FileRangeBuilder>> {
let file_builders = self.file_builders.lock().unwrap();
file_builders[index].clone()
}
fn set_file_builder(&self, index: usize, builder: Arc<FileRangeBuilder>) {
let mut file_builders = self.file_builders.lock().unwrap();
file_builders[index] = Some(builder);
}
}
#[cfg(test)]
mod tests {
use common_time::timestamp::TimeUnit;
use common_time::Timestamp;
use super::*;
type Output = (Vec<usize>, i64, i64);
fn run_group_ranges_test(input: &[(usize, i64, i64)], expect: &[Output]) {
let ranges = input
.iter()
.map(|(idx, start, end)| {
let time_range = (
Timestamp::new(*start, TimeUnit::Second),
Timestamp::new(*end, TimeUnit::Second),
);
RangeMeta {
time_range,
indices: smallvec![SourceIndex {
index: *idx,
num_row_groups: 0,
}],
row_group_indices: smallvec![RowGroupIndex {
index: *idx,
row_group_index: 0
}],
num_rows: 1,
}
})
.collect();
let output = group_ranges_for_seq_scan(ranges);
let actual: Vec<_> = output
.iter()
.map(|range| {
let indices = range.indices.iter().map(|index| index.index).collect();
let group_indices: Vec<_> = range
.row_group_indices
.iter()
.map(|idx| idx.index)
.collect();
assert_eq!(indices, group_indices);
let range = range.time_range;
(indices, range.0.value(), range.1.value())
})
.collect();
assert_eq!(expect, actual);
}
#[test]
fn test_group_ranges() {
// Group 1 part.
run_group_ranges_test(&[(1, 0, 2000)], &[(vec![1], 0, 2000)]);
// 1, 2, 3, 4 => [3, 1, 4], [2]
run_group_ranges_test(
&[
(1, 1000, 2000),
(2, 6000, 7000),
(3, 0, 1500),
(4, 1500, 3000),
],
&[(vec![3, 1, 4], 0, 3000), (vec![2], 6000, 7000)],
);
// 1, 2, 3 => [3], [1], [2],
run_group_ranges_test(
&[(1, 3000, 4000), (2, 4001, 6000), (3, 0, 1000)],
&[
(vec![3], 0, 1000),
(vec![1], 3000, 4000),
(vec![2], 4001, 6000),
],
);
// 1, 2, 3 => [3], [1, 2]
run_group_ranges_test(
&[(1, 3000, 4000), (2, 4000, 6000), (3, 0, 1000)],
&[(vec![3], 0, 1000), (vec![1, 2], 3000, 6000)],
);
}
#[test]
fn test_merge_range() {
let mut left = RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![SourceIndex {
index: 1,
num_row_groups: 2,
}],
row_group_indices: smallvec![
RowGroupIndex {
index: 1,
row_group_index: 1
},
RowGroupIndex {
index: 1,
row_group_index: 2
}
],
num_rows: 5,
};
let right = RangeMeta {
time_range: (Timestamp::new_second(800), Timestamp::new_second(1200)),
indices: smallvec![SourceIndex {
index: 2,
num_row_groups: 2,
}],
row_group_indices: smallvec![
RowGroupIndex {
index: 2,
row_group_index: 1
},
RowGroupIndex {
index: 2,
row_group_index: 2
}
],
num_rows: 4,
};
left.merge(right);
assert_eq!(
left,
RangeMeta {
time_range: (Timestamp::new_second(800), Timestamp::new_second(2000)),
indices: smallvec![
SourceIndex {
index: 1,
num_row_groups: 2
},
SourceIndex {
index: 2,
num_row_groups: 2
}
],
row_group_indices: smallvec![
RowGroupIndex {
index: 1,
row_group_index: 1
},
RowGroupIndex {
index: 1,
row_group_index: 2
},
RowGroupIndex {
index: 2,
row_group_index: 1
},
RowGroupIndex {
index: 2,
row_group_index: 2
},
],
num_rows: 9,
}
);
}
#[test]
fn test_split_range() {
let range = RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![SourceIndex {
index: 1,
num_row_groups: 2,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 1,
row_group_index: ALL_ROW_GROUPS,
}],
num_rows: 5,
};
assert!(range.can_split_preserve_order());
let mut output = Vec::new();
range.maybe_split(&mut output);
assert_eq!(
output,
&[
RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![SourceIndex {
index: 1,
num_row_groups: 2,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 1,
row_group_index: 0
},],
num_rows: 2,
},
RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![SourceIndex {
index: 1,
num_row_groups: 2,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 1,
row_group_index: 1
}],
num_rows: 2,
}
]
);
}
#[test]
fn test_not_split_range() {
let range = RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![
SourceIndex {
index: 1,
num_row_groups: 1,
},
SourceIndex {
index: 2,
num_row_groups: 1,
}
],
row_group_indices: smallvec![
RowGroupIndex {
index: 1,
row_group_index: 1
},
RowGroupIndex {
index: 2,
row_group_index: 1
}
],
num_rows: 5,
};
assert!(!range.can_split_preserve_order());
let mut output = Vec::new();
range.maybe_split(&mut output);
assert_eq!(1, output.len());
}
#[test]
fn test_maybe_split_ranges() {
let ranges = vec![
RangeMeta {
time_range: (Timestamp::new_second(0), Timestamp::new_second(500)),
indices: smallvec![SourceIndex {
index: 0,
num_row_groups: 1,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 0,
row_group_index: 0,
},],
num_rows: 4,
},
RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![SourceIndex {
index: 1,
num_row_groups: 2,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 1,
row_group_index: ALL_ROW_GROUPS,
},],
num_rows: 4,
},
RangeMeta {
time_range: (Timestamp::new_second(3000), Timestamp::new_second(4000)),
indices: smallvec![
SourceIndex {
index: 2,
num_row_groups: 2,
},
SourceIndex {
index: 3,
num_row_groups: 0,
}
],
row_group_indices: smallvec![
RowGroupIndex {
index: 2,
row_group_index: ALL_ROW_GROUPS,
},
RowGroupIndex {
index: 3,
row_group_index: ALL_ROW_GROUPS,
}
],
num_rows: 5,
},
];
let output = maybe_split_ranges_for_seq_scan(ranges);
assert_eq!(
output,
vec![
RangeMeta {
time_range: (Timestamp::new_second(0), Timestamp::new_second(500)),
indices: smallvec![SourceIndex {
index: 0,
num_row_groups: 1,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 0,
row_group_index: 0
},],
num_rows: 4,
},
RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![SourceIndex {
index: 1,
num_row_groups: 2,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 1,
row_group_index: 0
},],
num_rows: 2,
},
RangeMeta {
time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
indices: smallvec![SourceIndex {
index: 1,
num_row_groups: 2,
}],
row_group_indices: smallvec![RowGroupIndex {
index: 1,
row_group_index: 1
}],
num_rows: 2,
},
RangeMeta {
time_range: (Timestamp::new_second(3000), Timestamp::new_second(4000)),
indices: smallvec![
SourceIndex {
index: 2,
num_row_groups: 2
},
SourceIndex {
index: 3,
num_row_groups: 0,
}
],
row_group_indices: smallvec![
RowGroupIndex {
index: 2,
row_group_index: ALL_ROW_GROUPS,
},
RowGroupIndex {
index: 3,
row_group_index: ALL_ROW_GROUPS,
}
],
num_rows: 5,
},
]
)
}
}