mito2/read/
range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Structs for partition ranges.

use std::collections::BTreeMap;
use std::sync::{Arc, Mutex};

use common_time::Timestamp;
use parquet::arrow::arrow_reader::RowSelection;
use smallvec::{smallvec, SmallVec};
use store_api::region_engine::PartitionRange;
use store_api::storage::TimeSeriesDistribution;

use crate::cache::CacheStrategy;
use crate::error::Result;
use crate::memtable::{MemtableRange, MemtableRanges, MemtableStats};
use crate::read::scan_region::ScanInput;
use crate::sst::file::{overlaps, FileHandle, FileTimeRange};
use crate::sst::parquet::file_range::{FileRange, FileRangeContextRef};
use crate::sst::parquet::format::parquet_row_group_time_range;
use crate::sst::parquet::reader::ReaderMetrics;
use crate::sst::parquet::DEFAULT_ROW_GROUP_SIZE;

const ALL_ROW_GROUPS: i64 = -1;

/// Index and metadata for a memtable or file.
#[derive(Debug, Clone, Copy, PartialEq)]
pub(crate) struct SourceIndex {
    /// Index of the memtable and file.
    pub(crate) index: usize,
    /// Total number of row groups in this source. 0 if the metadata
    /// is unavailable. We use this to split files.
    pub(crate) num_row_groups: u64,
}

/// Index to access a row group.
#[derive(Debug, Clone, Copy, PartialEq)]
pub(crate) struct RowGroupIndex {
    /// Index to the memtable/file.
    pub(crate) index: usize,
    /// Row group index in the file.
    /// Negative index indicates all row groups.
    pub(crate) row_group_index: i64,
}

/// Meta data of a partition range.
/// If the scanner is [UnorderedScan], each meta only has one row group or memtable.
/// If the scanner is [SeqScan], each meta may have multiple row groups and memtables.
#[derive(Debug, PartialEq)]
pub(crate) struct RangeMeta {
    /// The time range of the range.
    pub(crate) time_range: FileTimeRange,
    /// Indices to memtables or files.
    pub(crate) indices: SmallVec<[SourceIndex; 2]>,
    /// Indices to memtable/file row groups that this range scans.
    pub(crate) row_group_indices: SmallVec<[RowGroupIndex; 2]>,
    /// Estimated number of rows in the range. This can be 0 if the statistics are not available.
    pub(crate) num_rows: usize,
}

impl RangeMeta {
    /// Creates a [PartitionRange] with specific identifier.
    /// It converts the inclusive max timestamp to exclusive end timestamp.
    pub(crate) fn new_partition_range(&self, identifier: usize) -> PartitionRange {
        PartitionRange {
            start: self.time_range.0,
            end: Timestamp::new(
                // The i64::MAX timestamp may be invisible but we don't guarantee to support this
                // value now.
                self.time_range
                    .1
                    .value()
                    .checked_add(1)
                    .unwrap_or(self.time_range.1.value()),
                self.time_range.1.unit(),
            ),
            num_rows: self.num_rows,
            identifier,
        }
    }

    /// Creates a list of ranges from the `input` for seq scan.
    /// If `compaction` is true, it doesn't split the ranges.
    pub(crate) fn seq_scan_ranges(input: &ScanInput, compaction: bool) -> Vec<RangeMeta> {
        let mut ranges = Vec::with_capacity(input.memtables.len() + input.files.len());
        Self::push_seq_mem_ranges(&input.memtables, &mut ranges);
        Self::push_seq_file_ranges(input.memtables.len(), &input.files, &mut ranges);

        let ranges = group_ranges_for_seq_scan(ranges);
        if compaction || input.distribution == Some(TimeSeriesDistribution::PerSeries) {
            // We don't split ranges in compaction or TimeSeriesDistribution::PerSeries.
            return ranges;
        }
        maybe_split_ranges_for_seq_scan(ranges)
    }

    /// Creates a list of ranges from the `input` for unordered scan.
    pub(crate) fn unordered_scan_ranges(input: &ScanInput) -> Vec<RangeMeta> {
        let mut ranges = Vec::with_capacity(input.memtables.len() + input.files.len());
        Self::push_unordered_mem_ranges(&input.memtables, &mut ranges);
        Self::push_unordered_file_ranges(
            input.memtables.len(),
            &input.files,
            &input.cache_strategy,
            &mut ranges,
        );

        ranges
    }

    /// Returns true if the time range of given `meta` overlaps with the time range of this meta.
    fn overlaps(&self, meta: &RangeMeta) -> bool {
        overlaps(&self.time_range, &meta.time_range)
    }

    /// Merges given `meta` to this meta.
    /// It assumes that the time ranges overlap and they don't have the same file or memtable index.
    fn merge(&mut self, mut other: RangeMeta) {
        debug_assert!(self.overlaps(&other));
        debug_assert!(self.indices.iter().all(|idx| !other.indices.contains(idx)));
        debug_assert!(self
            .row_group_indices
            .iter()
            .all(|idx| !other.row_group_indices.contains(idx)));

        self.time_range = (
            self.time_range.0.min(other.time_range.0),
            self.time_range.1.max(other.time_range.1),
        );
        self.indices.append(&mut other.indices);
        self.row_group_indices.append(&mut other.row_group_indices);
        self.num_rows += other.num_rows;
    }

    /// Returns true if we can split the range into multiple smaller ranges and
    /// still preserve the order for [SeqScan].
    fn can_split_preserve_order(&self) -> bool {
        self.indices.len() == 1 && self.indices[0].num_row_groups > 1
    }

    /// Splits the range if it can preserve the order.
    fn maybe_split(self, output: &mut Vec<RangeMeta>) {
        if self.can_split_preserve_order() {
            let num_row_groups = self.indices[0].num_row_groups;
            debug_assert_eq!(1, self.row_group_indices.len());
            debug_assert_eq!(ALL_ROW_GROUPS, self.row_group_indices[0].row_group_index);

            output.reserve(self.row_group_indices.len());
            let num_rows = self.num_rows / num_row_groups as usize;
            // Splits by row group.
            for row_group_index in 0..num_row_groups {
                output.push(RangeMeta {
                    time_range: self.time_range,
                    indices: self.indices.clone(),
                    row_group_indices: smallvec![RowGroupIndex {
                        index: self.indices[0].index,
                        row_group_index: row_group_index as i64,
                    }],
                    num_rows,
                });
            }
        } else {
            output.push(self);
        }
    }

    fn push_unordered_mem_ranges(memtables: &[MemRangeBuilder], ranges: &mut Vec<RangeMeta>) {
        // For append mode, we can parallelize reading memtables.
        for (memtable_index, memtable) in memtables.iter().enumerate() {
            let stats = memtable.stats();
            let Some(time_range) = stats.time_range() else {
                continue;
            };
            for row_group_index in 0..stats.num_ranges() {
                let num_rows = stats.num_rows() / stats.num_ranges();
                ranges.push(RangeMeta {
                    time_range,
                    indices: smallvec![SourceIndex {
                        index: memtable_index,
                        num_row_groups: stats.num_ranges() as u64,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: memtable_index,
                        row_group_index: row_group_index as i64,
                    }],
                    num_rows,
                });
            }
        }
    }

    fn push_unordered_file_ranges(
        num_memtables: usize,
        files: &[FileHandle],
        cache: &CacheStrategy,
        ranges: &mut Vec<RangeMeta>,
    ) {
        // For append mode, we can parallelize reading row groups.
        for (i, file) in files.iter().enumerate() {
            let file_index = num_memtables + i;
            // Get parquet meta from the cache.
            let parquet_meta =
                cache.get_parquet_meta_data_from_mem_cache(file.region_id(), file.file_id());
            if let Some(parquet_meta) = parquet_meta {
                // Scans each row group.
                for row_group_index in 0..file.meta_ref().num_row_groups {
                    let time_range = parquet_row_group_time_range(
                        file.meta_ref(),
                        &parquet_meta,
                        row_group_index as usize,
                    );
                    let num_rows = parquet_meta.row_group(row_group_index as usize).num_rows();
                    ranges.push(RangeMeta {
                        time_range: time_range.unwrap_or_else(|| file.time_range()),
                        indices: smallvec![SourceIndex {
                            index: file_index,
                            num_row_groups: file.meta_ref().num_row_groups,
                        }],
                        row_group_indices: smallvec![RowGroupIndex {
                            index: file_index,
                            row_group_index: row_group_index as i64,
                        }],
                        num_rows: num_rows as usize,
                    });
                }
            } else if file.meta_ref().num_row_groups > 0 {
                // Scans each row group.
                for row_group_index in 0..file.meta_ref().num_row_groups {
                    ranges.push(RangeMeta {
                        time_range: file.time_range(),
                        indices: smallvec![SourceIndex {
                            index: file_index,
                            num_row_groups: file.meta_ref().num_row_groups,
                        }],
                        row_group_indices: smallvec![RowGroupIndex {
                            index: file_index,
                            row_group_index: row_group_index as i64,
                        }],
                        num_rows: DEFAULT_ROW_GROUP_SIZE,
                    });
                }
            } else {
                // If we don't known the number of row groups in advance, scan all row groups.
                ranges.push(RangeMeta {
                    time_range: file.time_range(),
                    indices: smallvec![SourceIndex {
                        index: file_index,
                        num_row_groups: 0,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: file_index,
                        row_group_index: ALL_ROW_GROUPS,
                    }],
                    // This may be 0.
                    num_rows: file.meta_ref().num_rows as usize,
                });
            }
        }
    }

    fn push_seq_mem_ranges(memtables: &[MemRangeBuilder], ranges: &mut Vec<RangeMeta>) {
        // For non append-only mode, each range only contains one memtable by default.
        for (i, memtable) in memtables.iter().enumerate() {
            let stats = memtable.stats();
            let Some(time_range) = stats.time_range() else {
                continue;
            };
            ranges.push(RangeMeta {
                time_range,
                indices: smallvec![SourceIndex {
                    index: i,
                    num_row_groups: stats.num_ranges() as u64,
                }],
                row_group_indices: smallvec![RowGroupIndex {
                    index: i,
                    row_group_index: ALL_ROW_GROUPS,
                }],
                num_rows: stats.num_rows(),
            });
        }
    }

    fn push_seq_file_ranges(
        num_memtables: usize,
        files: &[FileHandle],
        ranges: &mut Vec<RangeMeta>,
    ) {
        // For non append-only mode, each range only contains one file.
        for (i, file) in files.iter().enumerate() {
            let file_index = num_memtables + i;
            ranges.push(RangeMeta {
                time_range: file.time_range(),
                indices: smallvec![SourceIndex {
                    index: file_index,
                    num_row_groups: file.meta_ref().num_row_groups,
                }],
                row_group_indices: smallvec![RowGroupIndex {
                    index: file_index,
                    row_group_index: ALL_ROW_GROUPS,
                }],
                num_rows: file.meta_ref().num_rows as usize,
            });
        }
    }
}

/// Groups ranges by time range.
/// It assumes each input range only contains a file or a memtable.
fn group_ranges_for_seq_scan(mut ranges: Vec<RangeMeta>) -> Vec<RangeMeta> {
    if ranges.is_empty() {
        return ranges;
    }

    // Sorts ranges by time range (start asc, end desc).
    ranges.sort_unstable_by(|a, b| {
        let l = a.time_range;
        let r = b.time_range;
        l.0.cmp(&r.0).then_with(|| r.1.cmp(&l.1))
    });
    let mut range_in_progress = None;
    // Parts with exclusive time ranges.
    let mut exclusive_ranges = Vec::with_capacity(ranges.len());
    for range in ranges {
        let Some(mut prev_range) = range_in_progress.take() else {
            // This is the new range to process.
            range_in_progress = Some(range);
            continue;
        };

        if prev_range.overlaps(&range) {
            prev_range.merge(range);
            range_in_progress = Some(prev_range);
        } else {
            exclusive_ranges.push(prev_range);
            range_in_progress = Some(range);
        }
    }
    if let Some(range) = range_in_progress {
        exclusive_ranges.push(range);
    }

    exclusive_ranges
}

/// Splits the range into multiple smaller ranges.
/// It assumes the input `ranges` list is created by [group_ranges_for_seq_scan()].
fn maybe_split_ranges_for_seq_scan(ranges: Vec<RangeMeta>) -> Vec<RangeMeta> {
    let mut new_ranges = Vec::with_capacity(ranges.len());
    for range in ranges {
        range.maybe_split(&mut new_ranges);
    }

    new_ranges
}

/// Builder to create file ranges.
#[derive(Default)]
pub(crate) struct FileRangeBuilder {
    /// Context for the file.
    /// None indicates nothing to read.
    context: Option<FileRangeContextRef>,
    /// Row selections for each row group to read.
    /// It skips the row group if it is not in the map.
    row_groups: BTreeMap<usize, Option<RowSelection>>,
}

impl FileRangeBuilder {
    /// Builds a file range builder from context and row groups.
    pub(crate) fn new(
        context: FileRangeContextRef,
        row_groups: BTreeMap<usize, Option<RowSelection>>,
    ) -> Self {
        Self {
            context: Some(context),
            row_groups,
        }
    }

    /// Builds file ranges to read.
    /// Negative `row_group_index` indicates all row groups.
    pub(crate) fn build_ranges(&self, row_group_index: i64, ranges: &mut SmallVec<[FileRange; 2]>) {
        let Some(context) = self.context.clone() else {
            return;
        };
        if row_group_index >= 0 {
            let row_group_index = row_group_index as usize;
            // Scans one row group.
            let Some(row_selection) = self.row_groups.get(&row_group_index) else {
                return;
            };
            ranges.push(FileRange::new(
                context,
                row_group_index,
                row_selection.clone(),
            ));
        } else {
            // Scans all row groups.
            ranges.extend(
                self.row_groups
                    .iter()
                    .map(|(row_group_index, row_selection)| {
                        FileRange::new(context.clone(), *row_group_index, row_selection.clone())
                    }),
            );
        }
    }
}

/// Builder to create mem ranges.
pub(crate) struct MemRangeBuilder {
    /// Ranges of a memtable.
    ranges: MemtableRanges,
}

impl MemRangeBuilder {
    /// Builds a mem range builder from row groups.
    pub(crate) fn new(ranges: MemtableRanges) -> Self {
        Self { ranges }
    }

    /// Builds mem ranges to read in the memtable.
    /// Negative `row_group_index` indicates all row groups.
    pub(crate) fn build_ranges(
        &self,
        row_group_index: i64,
        ranges: &mut SmallVec<[MemtableRange; 2]>,
    ) {
        if row_group_index >= 0 {
            let row_group_index = row_group_index as usize;
            // Scans one row group.
            let Some(range) = self.ranges.ranges.get(&row_group_index) else {
                return;
            };
            ranges.push(range.clone());
        } else {
            ranges.extend(self.ranges.ranges.values().cloned());
        }
    }

    /// Returns the statistics of the memtable.
    pub(crate) fn stats(&self) -> &MemtableStats {
        &self.ranges.stats
    }
}

/// List to manages the builders to create file ranges.
/// Each scan partition should have its own list. Mutex inside this list is used to allow moving
/// the list to different streams in the same partition.
pub(crate) struct RangeBuilderList {
    num_memtables: usize,
    file_builders: Mutex<Vec<Option<Arc<FileRangeBuilder>>>>,
}

impl RangeBuilderList {
    /// Creates a new [ReaderBuilderList] with the given number of memtables and files.
    pub(crate) fn new(num_memtables: usize, num_files: usize) -> Self {
        let file_builders = (0..num_files).map(|_| None).collect();
        Self {
            num_memtables,
            file_builders: Mutex::new(file_builders),
        }
    }

    /// Builds file ranges to read the row group at `index`.
    pub(crate) async fn build_file_ranges(
        &self,
        input: &ScanInput,
        index: RowGroupIndex,
        reader_metrics: &mut ReaderMetrics,
    ) -> Result<SmallVec<[FileRange; 2]>> {
        let mut ranges = SmallVec::new();
        let file_index = index.index - self.num_memtables;
        let builder_opt = self.get_file_builder(file_index);
        match builder_opt {
            Some(builder) => builder.build_ranges(index.row_group_index, &mut ranges),
            None => {
                let builder = input.prune_file(file_index, reader_metrics).await?;
                builder.build_ranges(index.row_group_index, &mut ranges);
                self.set_file_builder(file_index, Arc::new(builder));
            }
        }
        Ok(ranges)
    }

    fn get_file_builder(&self, index: usize) -> Option<Arc<FileRangeBuilder>> {
        let file_builders = self.file_builders.lock().unwrap();
        file_builders[index].clone()
    }

    fn set_file_builder(&self, index: usize, builder: Arc<FileRangeBuilder>) {
        let mut file_builders = self.file_builders.lock().unwrap();
        file_builders[index] = Some(builder);
    }
}

#[cfg(test)]
mod tests {
    use common_time::timestamp::TimeUnit;
    use common_time::Timestamp;

    use super::*;

    type Output = (Vec<usize>, i64, i64);

    fn run_group_ranges_test(input: &[(usize, i64, i64)], expect: &[Output]) {
        let ranges = input
            .iter()
            .map(|(idx, start, end)| {
                let time_range = (
                    Timestamp::new(*start, TimeUnit::Second),
                    Timestamp::new(*end, TimeUnit::Second),
                );
                RangeMeta {
                    time_range,
                    indices: smallvec![SourceIndex {
                        index: *idx,
                        num_row_groups: 0,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: *idx,
                        row_group_index: 0
                    }],
                    num_rows: 1,
                }
            })
            .collect();
        let output = group_ranges_for_seq_scan(ranges);
        let actual: Vec<_> = output
            .iter()
            .map(|range| {
                let indices = range.indices.iter().map(|index| index.index).collect();
                let group_indices: Vec<_> = range
                    .row_group_indices
                    .iter()
                    .map(|idx| idx.index)
                    .collect();
                assert_eq!(indices, group_indices);
                let range = range.time_range;
                (indices, range.0.value(), range.1.value())
            })
            .collect();
        assert_eq!(expect, actual);
    }

    #[test]
    fn test_group_ranges() {
        // Group 1 part.
        run_group_ranges_test(&[(1, 0, 2000)], &[(vec![1], 0, 2000)]);

        // 1, 2, 3, 4 => [3, 1, 4], [2]
        run_group_ranges_test(
            &[
                (1, 1000, 2000),
                (2, 6000, 7000),
                (3, 0, 1500),
                (4, 1500, 3000),
            ],
            &[(vec![3, 1, 4], 0, 3000), (vec![2], 6000, 7000)],
        );

        // 1, 2, 3 => [3], [1], [2],
        run_group_ranges_test(
            &[(1, 3000, 4000), (2, 4001, 6000), (3, 0, 1000)],
            &[
                (vec![3], 0, 1000),
                (vec![1], 3000, 4000),
                (vec![2], 4001, 6000),
            ],
        );

        // 1, 2, 3 => [3], [1, 2]
        run_group_ranges_test(
            &[(1, 3000, 4000), (2, 4000, 6000), (3, 0, 1000)],
            &[(vec![3], 0, 1000), (vec![1, 2], 3000, 6000)],
        );
    }

    #[test]
    fn test_merge_range() {
        let mut left = RangeMeta {
            time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
            indices: smallvec![SourceIndex {
                index: 1,
                num_row_groups: 2,
            }],
            row_group_indices: smallvec![
                RowGroupIndex {
                    index: 1,
                    row_group_index: 1
                },
                RowGroupIndex {
                    index: 1,
                    row_group_index: 2
                }
            ],
            num_rows: 5,
        };
        let right = RangeMeta {
            time_range: (Timestamp::new_second(800), Timestamp::new_second(1200)),
            indices: smallvec![SourceIndex {
                index: 2,
                num_row_groups: 2,
            }],
            row_group_indices: smallvec![
                RowGroupIndex {
                    index: 2,
                    row_group_index: 1
                },
                RowGroupIndex {
                    index: 2,
                    row_group_index: 2
                }
            ],
            num_rows: 4,
        };
        left.merge(right);

        assert_eq!(
            left,
            RangeMeta {
                time_range: (Timestamp::new_second(800), Timestamp::new_second(2000)),
                indices: smallvec![
                    SourceIndex {
                        index: 1,
                        num_row_groups: 2
                    },
                    SourceIndex {
                        index: 2,
                        num_row_groups: 2
                    }
                ],
                row_group_indices: smallvec![
                    RowGroupIndex {
                        index: 1,
                        row_group_index: 1
                    },
                    RowGroupIndex {
                        index: 1,
                        row_group_index: 2
                    },
                    RowGroupIndex {
                        index: 2,
                        row_group_index: 1
                    },
                    RowGroupIndex {
                        index: 2,
                        row_group_index: 2
                    },
                ],
                num_rows: 9,
            }
        );
    }

    #[test]
    fn test_split_range() {
        let range = RangeMeta {
            time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
            indices: smallvec![SourceIndex {
                index: 1,
                num_row_groups: 2,
            }],
            row_group_indices: smallvec![RowGroupIndex {
                index: 1,
                row_group_index: ALL_ROW_GROUPS,
            }],
            num_rows: 5,
        };

        assert!(range.can_split_preserve_order());
        let mut output = Vec::new();
        range.maybe_split(&mut output);

        assert_eq!(
            output,
            &[
                RangeMeta {
                    time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
                    indices: smallvec![SourceIndex {
                        index: 1,
                        num_row_groups: 2,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: 1,
                        row_group_index: 0
                    },],
                    num_rows: 2,
                },
                RangeMeta {
                    time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
                    indices: smallvec![SourceIndex {
                        index: 1,
                        num_row_groups: 2,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: 1,
                        row_group_index: 1
                    }],
                    num_rows: 2,
                }
            ]
        );
    }

    #[test]
    fn test_not_split_range() {
        let range = RangeMeta {
            time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
            indices: smallvec![
                SourceIndex {
                    index: 1,
                    num_row_groups: 1,
                },
                SourceIndex {
                    index: 2,
                    num_row_groups: 1,
                }
            ],
            row_group_indices: smallvec![
                RowGroupIndex {
                    index: 1,
                    row_group_index: 1
                },
                RowGroupIndex {
                    index: 2,
                    row_group_index: 1
                }
            ],
            num_rows: 5,
        };

        assert!(!range.can_split_preserve_order());
        let mut output = Vec::new();
        range.maybe_split(&mut output);
        assert_eq!(1, output.len());
    }

    #[test]
    fn test_maybe_split_ranges() {
        let ranges = vec![
            RangeMeta {
                time_range: (Timestamp::new_second(0), Timestamp::new_second(500)),
                indices: smallvec![SourceIndex {
                    index: 0,
                    num_row_groups: 1,
                }],
                row_group_indices: smallvec![RowGroupIndex {
                    index: 0,
                    row_group_index: 0,
                },],
                num_rows: 4,
            },
            RangeMeta {
                time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
                indices: smallvec![SourceIndex {
                    index: 1,
                    num_row_groups: 2,
                }],
                row_group_indices: smallvec![RowGroupIndex {
                    index: 1,
                    row_group_index: ALL_ROW_GROUPS,
                },],
                num_rows: 4,
            },
            RangeMeta {
                time_range: (Timestamp::new_second(3000), Timestamp::new_second(4000)),
                indices: smallvec![
                    SourceIndex {
                        index: 2,
                        num_row_groups: 2,
                    },
                    SourceIndex {
                        index: 3,
                        num_row_groups: 0,
                    }
                ],
                row_group_indices: smallvec![
                    RowGroupIndex {
                        index: 2,
                        row_group_index: ALL_ROW_GROUPS,
                    },
                    RowGroupIndex {
                        index: 3,
                        row_group_index: ALL_ROW_GROUPS,
                    }
                ],
                num_rows: 5,
            },
        ];
        let output = maybe_split_ranges_for_seq_scan(ranges);
        assert_eq!(
            output,
            vec![
                RangeMeta {
                    time_range: (Timestamp::new_second(0), Timestamp::new_second(500)),
                    indices: smallvec![SourceIndex {
                        index: 0,
                        num_row_groups: 1,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: 0,
                        row_group_index: 0
                    },],
                    num_rows: 4,
                },
                RangeMeta {
                    time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
                    indices: smallvec![SourceIndex {
                        index: 1,
                        num_row_groups: 2,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: 1,
                        row_group_index: 0
                    },],
                    num_rows: 2,
                },
                RangeMeta {
                    time_range: (Timestamp::new_second(1000), Timestamp::new_second(2000)),
                    indices: smallvec![SourceIndex {
                        index: 1,
                        num_row_groups: 2,
                    }],
                    row_group_indices: smallvec![RowGroupIndex {
                        index: 1,
                        row_group_index: 1
                    }],
                    num_rows: 2,
                },
                RangeMeta {
                    time_range: (Timestamp::new_second(3000), Timestamp::new_second(4000)),
                    indices: smallvec![
                        SourceIndex {
                            index: 2,
                            num_row_groups: 2
                        },
                        SourceIndex {
                            index: 3,
                            num_row_groups: 0,
                        }
                    ],
                    row_group_indices: smallvec![
                        RowGroupIndex {
                            index: 2,
                            row_group_index: ALL_ROW_GROUPS,
                        },
                        RowGroupIndex {
                            index: 3,
                            row_group_index: ALL_ROW_GROUPS,
                        }
                    ],
                    num_rows: 5,
                },
            ]
        )
    }
}