mito2/read/merge.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Merge reader implementation.
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::mem;
use std::time::{Duration, Instant};
use async_trait::async_trait;
use common_telemetry::debug;
use crate::error::Result;
use crate::memtable::BoxedBatchIterator;
use crate::metrics::READ_STAGE_ELAPSED;
use crate::read::{Batch, BatchReader, BoxedBatchReader, Source};
/// Reader to merge sorted batches.
///
/// The merge reader merges [Batch]es from multiple sources that yield sorted batches.
/// 1. Batch is ordered by primary key, time index, sequence desc, op type desc (we can
/// ignore op type as sequence is already unique).
/// 2. Batches from sources **must** not be empty.
///
/// The reader won't concatenate batches. Each batch returned by the reader also doesn't
/// contain duplicate rows. But the last (primary key, timestamp) of a batch may be the same
/// as the first one in the next batch.
pub struct MergeReader {
/// Holds [Node]s whose key range of current batch **is** overlapped with the merge window.
/// Each node yields batches from a `source`.
///
/// [Node] in this heap **must** not be empty. A `merge window` is the (primary key, timestamp)
/// range of the **root node** in the `hot` heap.
hot: BinaryHeap<Node>,
/// Holds `Node` whose key range of current batch **isn't** overlapped with the merge window.
///
/// `Node` in this heap **must** not be empty.
cold: BinaryHeap<Node>,
/// Batch to output.
output_batch: Option<Batch>,
/// Local metrics.
metrics: Metrics,
}
#[async_trait]
impl BatchReader for MergeReader {
async fn next_batch(&mut self) -> Result<Option<Batch>> {
let start = Instant::now();
while !self.hot.is_empty() && self.output_batch.is_none() {
if self.hot.len() == 1 {
// No need to do merge sort if only one batch in the hot heap.
self.fetch_batch_from_hottest().await?;
self.metrics.num_fetch_by_batches += 1;
} else {
// We could only fetch rows that less than the next node from the hottest node.
self.fetch_rows_from_hottest().await?;
self.metrics.num_fetch_by_rows += 1;
}
}
if let Some(batch) = self.output_batch.take() {
self.metrics.scan_cost += start.elapsed();
self.metrics.num_output_rows += batch.num_rows();
Ok(Some(batch))
} else {
// Nothing fetched.
self.metrics.scan_cost += start.elapsed();
Ok(None)
}
}
}
impl Drop for MergeReader {
fn drop(&mut self) {
debug!("Merge reader finished, metrics: {:?}", self.metrics);
READ_STAGE_ELAPSED
.with_label_values(&["merge"])
.observe(self.metrics.scan_cost.as_secs_f64());
READ_STAGE_ELAPSED
.with_label_values(&["merge_fetch"])
.observe(self.metrics.fetch_cost.as_secs_f64());
}
}
impl MergeReader {
/// Creates and initializes a new [MergeReader].
pub async fn new(sources: Vec<Source>) -> Result<MergeReader> {
let start = Instant::now();
let mut metrics = Metrics::default();
let mut cold = BinaryHeap::with_capacity(sources.len());
let hot = BinaryHeap::with_capacity(sources.len());
for source in sources {
let node = Node::new(source, &mut metrics).await?;
if !node.is_eof() {
// Ensure `cold` don't have eof nodes.
cold.push(node);
}
}
let mut reader = MergeReader {
hot,
cold,
output_batch: None,
metrics,
};
// Initializes the reader.
reader.refill_hot();
reader.metrics.scan_cost += start.elapsed();
Ok(reader)
}
/// Moves nodes in `cold` heap, whose key range is overlapped with current merge
/// window to `hot` heap.
fn refill_hot(&mut self) {
while !self.cold.is_empty() {
if let Some(merge_window) = self.hot.peek() {
let warmest = self.cold.peek().unwrap();
if warmest.is_behind(merge_window) {
// if the warmest node in the `cold` heap is totally after the
// `merge_window`, then no need to add more nodes into the `hot`
// heap for merge sorting.
break;
}
}
let warmest = self.cold.pop().unwrap();
self.hot.push(warmest);
}
}
/// Fetches one batch from the hottest node.
async fn fetch_batch_from_hottest(&mut self) -> Result<()> {
assert_eq!(1, self.hot.len());
let mut hottest = self.hot.pop().unwrap();
let batch = hottest.fetch_batch(&mut self.metrics).await?;
Self::maybe_output_batch(batch, &mut self.output_batch)?;
self.reheap(hottest)
}
/// Fetches non-duplicated rows from the hottest node.
async fn fetch_rows_from_hottest(&mut self) -> Result<()> {
// Safety: `fetch_batches_to_output()` ensures the hot heap has more than 1 element.
// Pop hottest node.
let mut top_node = self.hot.pop().unwrap();
let top = top_node.current_batch();
// Min timestamp and its sequence in the next batch.
let next_min_ts = {
let next_node = self.hot.peek().unwrap();
let next = next_node.current_batch();
// top and next have overlapping rows so they must have same primary keys.
debug_assert_eq!(top.primary_key(), next.primary_key());
// Safety: Batches in the heap is not empty, so we can use unwrap here.
next.first_timestamp().unwrap()
};
// Safety: Batches in the heap is not empty, so we can use unwrap here.
let timestamps = top.timestamps_native().unwrap();
// Binary searches the timestamp in the top batch.
// Safety: Batches should have the same timestamp resolution so we can compare the native
// value directly.
let duplicate_pos = match timestamps.binary_search(&next_min_ts.value()) {
Ok(pos) => pos,
Err(pos) => {
// No duplicate timestamp. Outputs timestamp before `pos`.
Self::maybe_output_batch(top.slice(0, pos), &mut self.output_batch)?;
top_node.skip_rows(pos, &mut self.metrics).await?;
return self.reheap(top_node);
}
};
// No need to remove duplicate timestamps.
let output_end = if duplicate_pos == 0 {
// If the first timestamp of the top node is duplicate. We can simply return the first row
// as the heap ensure it is the one with largest sequence.
1
} else {
// We don't know which one has the larger sequence so we use the range before
// the duplicate pos.
duplicate_pos
};
Self::maybe_output_batch(top.slice(0, output_end), &mut self.output_batch)?;
top_node.skip_rows(output_end, &mut self.metrics).await?;
self.reheap(top_node)
}
/// Push the node popped from `hot` back to a proper heap.
fn reheap(&mut self, node: Node) -> Result<()> {
if node.is_eof() {
// If the node is EOF, don't put it into the heap again.
// The merge window would be updated, need to refill the hot heap.
self.refill_hot();
} else {
// Find a proper heap for this node.
let node_is_cold = if let Some(hottest) = self.hot.peek() {
// If key range of this node is behind the hottest node's then we can
// push it to the cold heap. Otherwise we should push it to the hot heap.
node.is_behind(hottest)
} else {
// The hot heap is empty, but we don't known whether the current
// batch of this node is still the hottest.
true
};
if node_is_cold {
self.cold.push(node);
} else {
self.hot.push(node);
}
// Anyway, the merge window has been changed, we need to refill the hot heap.
self.refill_hot();
}
Ok(())
}
/// If `filter_deleted` is set to true, removes deleted entries and sets the `batch` to the `output_batch`.
///
/// Ignores the `batch` if it is empty.
fn maybe_output_batch(batch: Batch, output_batch: &mut Option<Batch>) -> Result<()> {
debug_assert!(output_batch.is_none());
if batch.is_empty() {
return Ok(());
}
*output_batch = Some(batch);
Ok(())
}
}
/// Builder to build and initialize a [MergeReader].
#[derive(Default)]
pub struct MergeReaderBuilder {
/// Input sources.
///
/// All source must yield batches with the same schema.
sources: Vec<Source>,
}
impl MergeReaderBuilder {
/// Returns an empty builder.
pub fn new() -> MergeReaderBuilder {
MergeReaderBuilder::default()
}
/// Creates a builder from sources.
pub fn from_sources(sources: Vec<Source>) -> MergeReaderBuilder {
MergeReaderBuilder { sources }
}
/// Pushes a batch reader to sources.
pub fn push_batch_reader(&mut self, reader: BoxedBatchReader) -> &mut Self {
self.sources.push(Source::Reader(reader));
self
}
/// Pushes a batch iterator to sources.
pub fn push_batch_iter(&mut self, iter: BoxedBatchIterator) -> &mut Self {
self.sources.push(Source::Iter(iter));
self
}
/// Builds and initializes the reader, then resets the builder.
pub async fn build(&mut self) -> Result<MergeReader> {
let sources = mem::take(&mut self.sources);
MergeReader::new(sources).await
}
}
/// Metrics for the merge reader.
#[derive(Debug, Default)]
struct Metrics {
/// Total scan cost of the reader.
scan_cost: Duration,
/// Number of times to fetch batches.
num_fetch_by_batches: usize,
/// Number of times to fetch rows.
num_fetch_by_rows: usize,
/// Number of input rows.
num_input_rows: usize,
/// Number of output rows.
num_output_rows: usize,
/// Cost to fetch batches from sources.
fetch_cost: Duration,
}
/// A `Node` represent an individual input data source to be merged.
struct Node {
/// Data source of this `Node`.
source: Source,
/// Current batch to be read. The node ensures the batch is not empty.
///
/// `None` means the `source` has reached EOF.
current_batch: Option<CompareFirst>,
}
impl Node {
/// Initialize a node.
///
/// It tries to fetch one batch from the `source`.
async fn new(mut source: Source, metrics: &mut Metrics) -> Result<Node> {
// Ensures batch is not empty.
let start = Instant::now();
let current_batch = source.next_batch().await?.map(CompareFirst);
metrics.fetch_cost += start.elapsed();
metrics.num_input_rows += current_batch.as_ref().map(|b| b.0.num_rows()).unwrap_or(0);
Ok(Node {
source,
current_batch,
})
}
/// Returns whether the node still has batch to read.
fn is_eof(&self) -> bool {
self.current_batch.is_none()
}
/// Returns the primary key of current batch.
///
/// # Panics
/// Panics if the node has reached EOF.
fn primary_key(&self) -> &[u8] {
self.current_batch().primary_key()
}
/// Returns current batch.
///
/// # Panics
/// Panics if the node has reached EOF.
fn current_batch(&self) -> &Batch {
&self.current_batch.as_ref().unwrap().0
}
/// Returns current batch and fetches next batch
/// from the source.
///
/// # Panics
/// Panics if the node has reached EOF.
async fn fetch_batch(&mut self, metrics: &mut Metrics) -> Result<Batch> {
let current = self.current_batch.take().unwrap();
let start = Instant::now();
// Ensures batch is not empty.
self.current_batch = self.source.next_batch().await?.map(CompareFirst);
metrics.fetch_cost += start.elapsed();
metrics.num_input_rows += self
.current_batch
.as_ref()
.map(|b| b.0.num_rows())
.unwrap_or(0);
Ok(current.0)
}
/// Returns true if the key range of current batch in `self` is behind (exclusive) current
/// batch in `other`.
///
/// # Panics
/// Panics if either `self` or `other` is EOF.
fn is_behind(&self, other: &Node) -> bool {
debug_assert!(!self.current_batch().is_empty());
debug_assert!(!other.current_batch().is_empty());
// We only compare pk and timestamp so nodes in the cold
// heap don't have overlapping timestamps with the hottest node
// in the hot heap.
self.primary_key().cmp(other.primary_key()).then_with(|| {
self.current_batch()
.first_timestamp()
.cmp(&other.current_batch().last_timestamp())
}) == Ordering::Greater
}
/// Skips first `num_to_skip` rows from node's current batch. If current batch is empty it fetches
/// next batch from the node.
///
/// # Panics
/// Panics if the node is EOF.
async fn skip_rows(&mut self, num_to_skip: usize, metrics: &mut Metrics) -> Result<()> {
let batch = self.current_batch();
debug_assert!(batch.num_rows() >= num_to_skip);
let remaining = batch.num_rows() - num_to_skip;
if remaining == 0 {
// Nothing remains, we need to fetch next batch to ensure the batch is not empty.
self.fetch_batch(metrics).await?;
} else {
debug_assert!(!batch.is_empty());
self.current_batch = Some(CompareFirst(batch.slice(num_to_skip, remaining)));
}
Ok(())
}
}
impl PartialEq for Node {
fn eq(&self, other: &Node) -> bool {
self.current_batch == other.current_batch
}
}
impl Eq for Node {}
impl PartialOrd for Node {
fn partial_cmp(&self, other: &Node) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Node {
fn cmp(&self, other: &Node) -> Ordering {
// The std binary heap is a max heap, but we want the nodes are ordered in
// ascend order, so we compare the nodes in reverse order.
other.current_batch.cmp(&self.current_batch)
}
}
/// Type to compare [Batch] by first row.
///
/// It ignores op type as sequence is enough to distinguish different rows.
struct CompareFirst(Batch);
impl PartialEq for CompareFirst {
fn eq(&self, other: &Self) -> bool {
self.0.primary_key() == other.0.primary_key()
&& self.0.first_timestamp() == other.0.first_timestamp()
&& self.0.first_sequence() == other.0.first_sequence()
}
}
impl Eq for CompareFirst {}
impl PartialOrd for CompareFirst {
fn partial_cmp(&self, other: &CompareFirst) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for CompareFirst {
/// Compares by primary key, time index, sequence desc.
fn cmp(&self, other: &CompareFirst) -> Ordering {
self.0
.primary_key()
.cmp(other.0.primary_key())
.then_with(|| self.0.first_timestamp().cmp(&other.0.first_timestamp()))
.then_with(|| other.0.first_sequence().cmp(&self.0.first_sequence()))
}
}
#[cfg(test)]
mod tests {
use api::v1::OpType;
use super::*;
use crate::test_util::{check_reader_result, new_batch, VecBatchReader};
#[tokio::test]
async fn test_merge_reader_empty() {
let mut reader = MergeReaderBuilder::new().build().await.unwrap();
assert!(reader.next_batch().await.unwrap().is_none());
assert!(reader.next_batch().await.unwrap().is_none());
}
#[tokio::test]
async fn test_merge_non_overlapping() {
let reader1 = VecBatchReader::new(&[
new_batch(
b"k1",
&[1, 2],
&[11, 12],
&[OpType::Put, OpType::Put],
&[21, 22],
),
new_batch(
b"k1",
&[7, 8],
&[17, 18],
&[OpType::Put, OpType::Delete],
&[27, 28],
),
new_batch(
b"k2",
&[2, 3],
&[12, 13],
&[OpType::Delete, OpType::Put],
&[22, 23],
),
]);
let reader2 = VecBatchReader::new(&[new_batch(
b"k1",
&[4, 5],
&[14, 15],
&[OpType::Put, OpType::Put],
&[24, 25],
)]);
let mut reader = MergeReaderBuilder::new()
.push_batch_reader(Box::new(reader1))
.push_batch_iter(Box::new(reader2))
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(
b"k1",
&[1, 2],
&[11, 12],
&[OpType::Put, OpType::Put],
&[21, 22],
),
new_batch(
b"k1",
&[4, 5],
&[14, 15],
&[OpType::Put, OpType::Put],
&[24, 25],
),
new_batch(
b"k1",
&[7, 8],
&[17, 18],
&[OpType::Put, OpType::Delete],
&[27, 28],
),
new_batch(
b"k2",
&[2, 3],
&[12, 13],
&[OpType::Delete, OpType::Put],
&[22, 23],
),
],
)
.await;
assert_eq!(8, reader.metrics.num_input_rows);
assert_eq!(8, reader.metrics.num_output_rows);
}
#[tokio::test]
async fn test_merge_reheap_hot() {
let reader1 = VecBatchReader::new(&[
new_batch(
b"k1",
&[1, 3],
&[10, 10],
&[OpType::Put, OpType::Put],
&[21, 23],
),
new_batch(b"k2", &[3], &[10], &[OpType::Put], &[23]),
]);
let reader2 = VecBatchReader::new(&[new_batch(
b"k1",
&[2, 4],
&[11, 11],
&[OpType::Put, OpType::Put],
&[32, 34],
)]);
let mut reader = MergeReaderBuilder::new()
.push_batch_reader(Box::new(reader1))
.push_batch_iter(Box::new(reader2))
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(b"k1", &[1], &[10], &[OpType::Put], &[21]),
new_batch(b"k1", &[2], &[11], &[OpType::Put], &[32]),
new_batch(b"k1", &[3], &[10], &[OpType::Put], &[23]),
new_batch(b"k1", &[4], &[11], &[OpType::Put], &[34]),
new_batch(b"k2", &[3], &[10], &[OpType::Put], &[23]),
],
)
.await;
}
#[tokio::test]
async fn test_merge_overlapping() {
let reader1 = VecBatchReader::new(&[
new_batch(
b"k1",
&[1, 2],
&[11, 12],
&[OpType::Put, OpType::Put],
&[21, 22],
),
new_batch(
b"k1",
&[4, 5],
&[14, 15],
// This override 4 and deletes 5.
&[OpType::Put, OpType::Delete],
&[24, 25],
),
new_batch(
b"k2",
&[2, 3],
&[12, 13],
// This delete 2.
&[OpType::Delete, OpType::Put],
&[22, 23],
),
]);
let reader2 = VecBatchReader::new(&[
new_batch(
b"k1",
&[3, 4, 5],
&[10, 10, 10],
&[OpType::Put, OpType::Put, OpType::Put],
&[33, 34, 35],
),
new_batch(
b"k2",
&[1, 10],
&[11, 20],
&[OpType::Put, OpType::Put],
&[21, 30],
),
]);
let mut reader = MergeReaderBuilder::new()
.push_batch_reader(Box::new(reader1))
.push_batch_iter(Box::new(reader2))
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(
b"k1",
&[1, 2],
&[11, 12],
&[OpType::Put, OpType::Put],
&[21, 22],
),
new_batch(b"k1", &[3], &[10], &[OpType::Put], &[33]),
new_batch(b"k1", &[4], &[14], &[OpType::Put], &[24]),
new_batch(b"k1", &[4], &[10], &[OpType::Put], &[34]),
new_batch(b"k1", &[5], &[15], &[OpType::Delete], &[25]),
new_batch(b"k1", &[5], &[10], &[OpType::Put], &[35]),
new_batch(b"k2", &[1], &[11], &[OpType::Put], &[21]),
new_batch(
b"k2",
&[2, 3],
&[12, 13],
&[OpType::Delete, OpType::Put],
&[22, 23],
),
new_batch(b"k2", &[10], &[20], &[OpType::Put], &[30]),
],
)
.await;
assert_eq!(11, reader.metrics.num_input_rows);
assert_eq!(11, reader.metrics.num_output_rows);
}
#[tokio::test]
async fn test_merge_deleted() {
let reader1 = VecBatchReader::new(&[
new_batch(
b"k1",
&[1, 2],
&[11, 12],
&[OpType::Delete, OpType::Delete],
&[21, 22],
),
new_batch(
b"k2",
&[2, 3],
&[12, 13],
&[OpType::Delete, OpType::Put],
&[22, 23],
),
]);
let reader2 = VecBatchReader::new(&[new_batch(
b"k1",
&[4, 5],
&[14, 15],
&[OpType::Delete, OpType::Delete],
&[24, 25],
)]);
let mut reader = MergeReaderBuilder::new()
.push_batch_reader(Box::new(reader1))
.push_batch_iter(Box::new(reader2))
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(
b"k1",
&[1, 2],
&[11, 12],
&[OpType::Delete, OpType::Delete],
&[21, 22],
),
new_batch(
b"k1",
&[4, 5],
&[14, 15],
&[OpType::Delete, OpType::Delete],
&[24, 25],
),
new_batch(
b"k2",
&[2, 3],
&[12, 13],
&[OpType::Delete, OpType::Put],
&[22, 23],
),
],
)
.await;
}
#[tokio::test]
async fn test_merge_next_node_empty() {
let reader1 = VecBatchReader::new(&[new_batch(
b"k1",
&[1, 2],
&[11, 12],
&[OpType::Put, OpType::Put],
&[21, 22],
)]);
let reader2 = VecBatchReader::new(&[new_batch(b"k1", &[1], &[10], &[OpType::Put], &[33])]);
let mut reader = MergeReaderBuilder::new()
.push_batch_reader(Box::new(reader1))
.push_batch_iter(Box::new(reader2))
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(b"k1", &[1], &[11], &[OpType::Put], &[21]),
new_batch(b"k1", &[1], &[10], &[OpType::Put], &[33]),
new_batch(b"k1", &[2], &[12], &[OpType::Put], &[22]),
],
)
.await;
}
#[tokio::test]
async fn test_merge_top_node_empty() {
let reader1 = VecBatchReader::new(&[new_batch(
b"k1",
&[1, 2],
&[10, 10],
&[OpType::Put, OpType::Put],
&[21, 22],
)]);
let reader2 = VecBatchReader::new(&[new_batch(
b"k1",
&[2, 3],
&[11, 11],
&[OpType::Put, OpType::Put],
&[32, 33],
)]);
let mut reader = MergeReaderBuilder::new()
.push_batch_reader(Box::new(reader1))
.push_batch_iter(Box::new(reader2))
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(b"k1", &[1], &[10], &[OpType::Put], &[21]),
new_batch(b"k1", &[2], &[11], &[OpType::Put], &[32]),
new_batch(b"k1", &[2], &[10], &[OpType::Put], &[22]),
new_batch(b"k1", &[3], &[11], &[OpType::Put], &[33]),
],
)
.await;
}
#[tokio::test]
async fn test_merge_large_range() {
let reader1 = VecBatchReader::new(&[new_batch(
b"k1",
&[1, 10],
&[10, 10],
&[OpType::Put, OpType::Put],
&[21, 30],
)]);
let reader2 = VecBatchReader::new(&[new_batch(
b"k1",
&[1, 20],
&[11, 11],
&[OpType::Put, OpType::Put],
&[31, 40],
)]);
// The hot heap have a node that doesn't have duplicate
// timestamps.
let reader3 = VecBatchReader::new(&[new_batch(
b"k1",
&[6, 8],
&[11, 11],
&[OpType::Put, OpType::Put],
&[36, 38],
)]);
let mut reader = MergeReaderBuilder::new()
.push_batch_reader(Box::new(reader1))
.push_batch_iter(Box::new(reader2))
.push_batch_reader(Box::new(reader3))
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(b"k1", &[1], &[11], &[OpType::Put], &[31]),
new_batch(b"k1", &[1], &[10], &[OpType::Put], &[21]),
new_batch(
b"k1",
&[6, 8],
&[11, 11],
&[OpType::Put, OpType::Put],
&[36, 38],
),
new_batch(b"k1", &[10], &[10], &[OpType::Put], &[30]),
new_batch(b"k1", &[20], &[11], &[OpType::Put], &[40]),
],
)
.await;
}
#[tokio::test]
async fn test_merge_many_duplicates() {
let mut builder = MergeReaderBuilder::new();
for i in 0..10 {
let batches: Vec<_> = (0..8)
.map(|ts| new_batch(b"k1", &[ts], &[i], &[OpType::Put], &[100]))
.collect();
let reader = VecBatchReader::new(&batches);
builder.push_batch_reader(Box::new(reader));
}
let mut reader = builder.build().await.unwrap();
let mut expect = Vec::with_capacity(80);
for ts in 0..8 {
for i in 0..10 {
let batch = new_batch(b"k1", &[ts], &[9 - i], &[OpType::Put], &[100]);
expect.push(batch);
}
}
check_reader_result(&mut reader, &expect).await;
}
#[tokio::test]
async fn test_merge_keep_duplicate() {
let reader1 = VecBatchReader::new(&[new_batch(
b"k1",
&[1, 2],
&[10, 10],
&[OpType::Put, OpType::Put],
&[21, 22],
)]);
let reader2 = VecBatchReader::new(&[new_batch(
b"k1",
&[2, 3],
&[11, 11],
&[OpType::Put, OpType::Put],
&[32, 33],
)]);
let sources = vec![
Source::Reader(Box::new(reader1)),
Source::Iter(Box::new(reader2)),
];
let mut reader = MergeReaderBuilder::from_sources(sources)
.build()
.await
.unwrap();
check_reader_result(
&mut reader,
&[
new_batch(b"k1", &[1], &[10], &[OpType::Put], &[21]),
new_batch(b"k1", &[2], &[11], &[OpType::Put], &[32]),
new_batch(b"k1", &[2], &[10], &[OpType::Put], &[22]),
new_batch(b"k1", &[3], &[11], &[OpType::Put], &[33]),
],
)
.await;
}
}