mito2/memtable/
time_partition.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Partitions memtables by time.

use std::collections::HashMap;
use std::sync::{Arc, Mutex};
use std::time::Duration;

use common_telemetry::debug;
use common_time::timestamp::TimeUnit;
use common_time::timestamp_millis::BucketAligned;
use common_time::Timestamp;
use smallvec::{smallvec, SmallVec};
use snafu::OptionExt;
use store_api::metadata::RegionMetadataRef;

use crate::error::{InvalidRequestSnafu, Result};
use crate::memtable::key_values::KeyValue;
use crate::memtable::version::SmallMemtableVec;
use crate::memtable::{KeyValues, MemtableBuilderRef, MemtableId, MemtableRef};

/// A partition holds rows with timestamps between `[min, max)`.
#[derive(Debug, Clone)]
pub struct TimePartition {
    /// Memtable of the partition.
    memtable: MemtableRef,
    /// Time range of the partition. `None` means there is no time range. The time
    /// range is `None` if and only if the [TimePartitions::part_duration] is `None`.
    time_range: Option<PartTimeRange>,
}

impl TimePartition {
    /// Returns whether the `ts` belongs to the partition.
    fn contains_timestamp(&self, ts: Timestamp) -> bool {
        let Some(range) = self.time_range else {
            return true;
        };

        range.contains_timestamp(ts)
    }

    /// Write rows to the part.
    fn write(&self, kvs: &KeyValues) -> Result<()> {
        self.memtable.write(kvs)
    }
}

type PartitionVec = SmallVec<[TimePartition; 2]>;

/// Partitions.
#[derive(Debug)]
pub struct TimePartitions {
    /// Mutable data of partitions.
    inner: Mutex<PartitionsInner>,
    /// Duration of a partition.
    ///
    /// `None` means there is only one partition and the [TimePartition::time_range] is
    /// also `None`.
    part_duration: Option<Duration>,
    /// Metadata of the region.
    metadata: RegionMetadataRef,
    /// Builder of memtables.
    builder: MemtableBuilderRef,
}

pub type TimePartitionsRef = Arc<TimePartitions>;

impl TimePartitions {
    /// Returns a new empty partition list with optional duration.
    pub fn new(
        metadata: RegionMetadataRef,
        builder: MemtableBuilderRef,
        next_memtable_id: MemtableId,
        part_duration: Option<Duration>,
    ) -> Self {
        let mut inner = PartitionsInner::new(next_memtable_id);
        if part_duration.is_none() {
            // If `part_duration` is None, then we create a partition with `None` time
            // range so we will write all rows to that partition.
            let memtable = builder.build(inner.alloc_memtable_id(), &metadata);
            debug!(
                "Creates a time partition for all timestamps, region: {}, memtable_id: {}",
                metadata.region_id,
                memtable.id(),
            );
            let part = TimePartition {
                memtable,
                time_range: None,
            };
            inner.parts.push(part);
        }

        Self {
            inner: Mutex::new(inner),
            part_duration,
            metadata,
            builder,
        }
    }

    /// Write key values to memtables.
    ///
    /// It creates new partitions if necessary.
    pub fn write(&self, kvs: &KeyValues) -> Result<()> {
        // Get all parts.
        let parts = self.list_partitions();

        // Checks whether all rows belongs to a single part. Checks in reverse order as we usually
        // put to latest part.
        for part in parts.iter().rev() {
            let mut all_in_partition = true;
            for kv in kvs.iter() {
                // Safety: We checked the schema in the write request.
                let ts = kv.timestamp().as_timestamp().unwrap().unwrap();
                if !part.contains_timestamp(ts) {
                    all_in_partition = false;
                    break;
                }
            }
            if !all_in_partition {
                continue;
            }

            // We can write all rows to this part.
            return part.write(kvs);
        }

        // Slow path: We have to split kvs by partitions.
        self.write_multi_parts(kvs, &parts)
    }

    /// Append memtables in partitions to `memtables`.
    pub fn list_memtables(&self, memtables: &mut Vec<MemtableRef>) {
        let inner = self.inner.lock().unwrap();
        memtables.extend(inner.parts.iter().map(|part| part.memtable.clone()));
    }

    /// Returns the number of partitions.
    pub fn num_partitions(&self) -> usize {
        let inner = self.inner.lock().unwrap();
        inner.parts.len()
    }

    /// Returns true if all memtables are empty.
    pub fn is_empty(&self) -> bool {
        let inner = self.inner.lock().unwrap();
        inner.parts.iter().all(|part| part.memtable.is_empty())
    }

    /// Freezes all memtables.
    pub fn freeze(&self) -> Result<()> {
        let inner = self.inner.lock().unwrap();
        for part in &*inner.parts {
            part.memtable.freeze()?;
        }
        Ok(())
    }

    /// Forks latest partition and updates the partition duration if `part_duration` is Some.
    pub fn fork(&self, metadata: &RegionMetadataRef, part_duration: Option<Duration>) -> Self {
        // Fall back to the existing partition duration.
        let part_duration = part_duration.or(self.part_duration);

        let mut inner = self.inner.lock().unwrap();
        let latest_part = inner
            .parts
            .iter()
            .max_by_key(|part| part.time_range.map(|range| range.min_timestamp))
            .cloned();

        let Some(old_part) = latest_part else {
            // If there is no partition, then we create a new partition with the new duration.
            return Self::new(
                metadata.clone(),
                self.builder.clone(),
                inner.next_memtable_id,
                part_duration,
            );
        };

        let old_stats = old_part.memtable.stats();
        // Use the max timestamp to compute the new time range for the memtable.
        // If `part_duration` is None, the new range will be None.
        let new_time_range =
            old_stats
                .time_range()
                .zip(part_duration)
                .and_then(|(range, bucket)| {
                    partition_start_timestamp(range.1, bucket)
                        .and_then(|start| PartTimeRange::from_start_duration(start, bucket))
                });
        // Forks the latest partition, but compute the time range based on the new duration.
        let memtable = old_part.memtable.fork(inner.alloc_memtable_id(), metadata);
        let new_part = TimePartition {
            memtable,
            time_range: new_time_range,
        };

        Self {
            inner: Mutex::new(PartitionsInner::with_partition(
                new_part,
                inner.next_memtable_id,
            )),
            part_duration,
            metadata: metadata.clone(),
            builder: self.builder.clone(),
        }
    }

    /// Returns partition duration.
    pub(crate) fn part_duration(&self) -> Option<Duration> {
        self.part_duration
    }

    /// Returns memory usage.
    pub(crate) fn memory_usage(&self) -> usize {
        let inner = self.inner.lock().unwrap();
        inner
            .parts
            .iter()
            .map(|part| part.memtable.stats().estimated_bytes)
            .sum()
    }

    /// Returns the number of rows.
    pub(crate) fn num_rows(&self) -> u64 {
        let inner = self.inner.lock().unwrap();
        inner
            .parts
            .iter()
            .map(|part| part.memtable.stats().num_rows as u64)
            .sum()
    }

    /// Append memtables in partitions to small vec.
    pub(crate) fn list_memtables_to_small_vec(&self, memtables: &mut SmallMemtableVec) {
        let inner = self.inner.lock().unwrap();
        memtables.extend(inner.parts.iter().map(|part| part.memtable.clone()));
    }

    /// Returns the next memtable id.
    pub(crate) fn next_memtable_id(&self) -> MemtableId {
        let inner = self.inner.lock().unwrap();
        inner.next_memtable_id
    }

    /// Creates a new empty partition list from this list and a `part_duration`.
    /// It falls back to the old partition duration if `part_duration` is `None`.
    pub(crate) fn new_with_part_duration(&self, part_duration: Option<Duration>) -> Self {
        debug_assert!(self.is_empty());

        Self::new(
            self.metadata.clone(),
            self.builder.clone(),
            self.next_memtable_id(),
            part_duration.or(self.part_duration),
        )
    }

    /// Returns all partitions.
    fn list_partitions(&self) -> PartitionVec {
        let inner = self.inner.lock().unwrap();
        inner.parts.clone()
    }

    /// Write to multiple partitions.
    fn write_multi_parts(&self, kvs: &KeyValues, parts: &PartitionVec) -> Result<()> {
        // If part duration is `None` then there is always one partition and all rows
        // will be put in that partition before invoking this method.
        debug_assert!(self.part_duration.is_some());

        let mut parts_to_write = HashMap::new();
        let mut missing_parts = HashMap::new();
        for kv in kvs.iter() {
            let mut part_found = false;
            // Safety: We used the timestamp before.
            let ts = kv.timestamp().as_timestamp().unwrap().unwrap();
            for part in parts {
                if part.contains_timestamp(ts) {
                    // Safety: Since part duration is `Some` so all time range should be `Some`.
                    parts_to_write
                        .entry(part.time_range.unwrap().min_timestamp)
                        .or_insert_with(|| PartitionToWrite {
                            partition: part.clone(),
                            key_values: Vec::new(),
                        })
                        .key_values
                        .push(kv);
                    part_found = true;
                    break;
                }
            }

            if !part_found {
                // We need to write it to a new part.
                // Safety: `new()` ensures duration is always Some if we do to this method.
                let part_duration = self.part_duration.unwrap();
                let part_start =
                    partition_start_timestamp(ts, part_duration).with_context(|| {
                        InvalidRequestSnafu {
                            region_id: self.metadata.region_id,
                            reason: format!(
                                "timestamp {ts:?} and bucket {part_duration:?} are out of range"
                            ),
                        }
                    })?;
                missing_parts
                    .entry(part_start)
                    .or_insert_with(Vec::new)
                    .push(kv);
            }
        }

        // Writes rows to existing parts.
        for part_to_write in parts_to_write.into_values() {
            for kv in part_to_write.key_values {
                part_to_write.partition.memtable.write_one(kv)?;
            }
        }

        let part_duration = self.part_duration.unwrap();
        // Creates new parts and writes to them. Acquires the lock to avoid others create
        // the same partition.
        let mut inner = self.inner.lock().unwrap();
        for (part_start, key_values) in missing_parts {
            let part_pos = match inner
                .parts
                .iter()
                .position(|part| part.time_range.unwrap().min_timestamp == part_start)
            {
                Some(pos) => pos,
                None => {
                    let range = PartTimeRange::from_start_duration(part_start, part_duration)
                        .with_context(|| InvalidRequestSnafu {
                            region_id: self.metadata.region_id,
                            reason: format!(
                                "Partition time range for {part_start:?} is out of bound, bucket size: {part_duration:?}",
                            ),
                        })?;
                    let memtable = self
                        .builder
                        .build(inner.alloc_memtable_id(), &self.metadata);
                    debug!(
                        "Create time partition {:?} for region {}, duration: {:?}, memtable_id: {}, parts_total: {}",
                        range,
                        self.metadata.region_id,
                        part_duration,
                        memtable.id(),
                        inner.parts.len() + 1
                    );
                    let pos = inner.parts.len();
                    inner.parts.push(TimePartition {
                        memtable,
                        time_range: Some(range),
                    });
                    pos
                }
            };

            let memtable = &inner.parts[part_pos].memtable;
            for kv in key_values {
                memtable.write_one(kv)?;
            }
        }

        Ok(())
    }
}

/// Computes the start timestamp of the partition for `ts`.
///
/// It always use bucket size in seconds which should fit all timestamp resolution.
fn partition_start_timestamp(ts: Timestamp, bucket: Duration) -> Option<Timestamp> {
    // Safety: We convert it to seconds so it never returns `None`.
    let ts_sec = ts.convert_to(TimeUnit::Second).unwrap();
    let bucket_sec: i64 = bucket.as_secs().try_into().ok()?;
    let start_sec = ts_sec.align_by_bucket(bucket_sec)?;
    start_sec.convert_to(ts.unit())
}

#[derive(Debug)]
struct PartitionsInner {
    /// All partitions.
    parts: PartitionVec,
    /// Next memtable id.
    next_memtable_id: MemtableId,
}

impl PartitionsInner {
    fn new(next_memtable_id: MemtableId) -> Self {
        Self {
            parts: Default::default(),
            next_memtable_id,
        }
    }

    fn with_partition(part: TimePartition, next_memtable_id: MemtableId) -> Self {
        Self {
            parts: smallvec![part],
            next_memtable_id,
        }
    }

    fn alloc_memtable_id(&mut self) -> MemtableId {
        let id = self.next_memtable_id;
        self.next_memtable_id += 1;
        id
    }
}

/// Time range of a partition.
#[derive(Debug, Clone, Copy)]
struct PartTimeRange {
    /// Inclusive min timestamp of rows in the partition.
    min_timestamp: Timestamp,
    /// Exclusive max timestamp of rows in the partition.
    max_timestamp: Timestamp,
}

impl PartTimeRange {
    fn from_start_duration(start: Timestamp, duration: Duration) -> Option<Self> {
        let start_sec = start.convert_to(TimeUnit::Second)?;
        let end_sec = start_sec.add_duration(duration).ok()?;
        let min_timestamp = start_sec.convert_to(start.unit())?;
        let max_timestamp = end_sec.convert_to(start.unit())?;

        Some(Self {
            min_timestamp,
            max_timestamp,
        })
    }

    /// Returns whether the `ts` belongs to the partition.
    fn contains_timestamp(&self, ts: Timestamp) -> bool {
        self.min_timestamp <= ts && ts < self.max_timestamp
    }
}

struct PartitionToWrite<'a> {
    partition: TimePartition,
    key_values: Vec<KeyValue<'a>>,
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::memtable::partition_tree::PartitionTreeMemtableBuilder;
    use crate::test_util::memtable_util::{self, collect_iter_timestamps};

    #[test]
    fn test_no_duration() {
        let metadata = memtable_util::metadata_for_test();
        let builder = Arc::new(PartitionTreeMemtableBuilder::default());
        let partitions = TimePartitions::new(metadata.clone(), builder, 0, None);
        assert_eq!(1, partitions.num_partitions());
        assert!(partitions.is_empty());

        let kvs = memtable_util::build_key_values(
            &metadata,
            "hello".to_string(),
            0,
            &[1000, 3000, 7000, 5000, 6000],
            0, // sequence 0, 1, 2, 3, 4
        );
        partitions.write(&kvs).unwrap();

        assert_eq!(1, partitions.num_partitions());
        assert!(!partitions.is_empty());
        let mut memtables = Vec::new();
        partitions.list_memtables(&mut memtables);
        assert_eq!(0, memtables[0].id());

        let iter = memtables[0].iter(None, None, None).unwrap();
        let timestamps = collect_iter_timestamps(iter);
        assert_eq!(&[1000, 3000, 5000, 6000, 7000], &timestamps[..]);
    }

    #[test]
    fn test_write_single_part() {
        let metadata = memtable_util::metadata_for_test();
        let builder = Arc::new(PartitionTreeMemtableBuilder::default());
        let partitions =
            TimePartitions::new(metadata.clone(), builder, 0, Some(Duration::from_secs(10)));
        assert_eq!(0, partitions.num_partitions());

        let kvs = memtable_util::build_key_values(
            &metadata,
            "hello".to_string(),
            0,
            &[5000, 2000, 0],
            0, // sequence 0, 1, 2
        );
        // It should creates a new partition.
        partitions.write(&kvs).unwrap();
        assert_eq!(1, partitions.num_partitions());
        assert!(!partitions.is_empty());

        let kvs = memtable_util::build_key_values(
            &metadata,
            "hello".to_string(),
            0,
            &[3000, 7000, 4000],
            3, // sequence 3, 4, 5
        );
        // Still writes to the same partition.
        partitions.write(&kvs).unwrap();
        assert_eq!(1, partitions.num_partitions());

        let mut memtables = Vec::new();
        partitions.list_memtables(&mut memtables);
        let iter = memtables[0].iter(None, None, None).unwrap();
        let timestamps = collect_iter_timestamps(iter);
        assert_eq!(&[0, 2000, 3000, 4000, 5000, 7000], &timestamps[..]);
        let parts = partitions.list_partitions();
        assert_eq!(
            Timestamp::new_millisecond(0),
            parts[0].time_range.unwrap().min_timestamp
        );
        assert_eq!(
            Timestamp::new_millisecond(10000),
            parts[0].time_range.unwrap().max_timestamp
        );
    }

    fn new_multi_partitions(metadata: &RegionMetadataRef) -> TimePartitions {
        let builder = Arc::new(PartitionTreeMemtableBuilder::default());
        let partitions =
            TimePartitions::new(metadata.clone(), builder, 0, Some(Duration::from_secs(5)));
        assert_eq!(0, partitions.num_partitions());

        let kvs = memtable_util::build_key_values(
            metadata,
            "hello".to_string(),
            0,
            &[2000, 0],
            0, // sequence 0, 1
        );
        // It should creates a new partition.
        partitions.write(&kvs).unwrap();
        assert_eq!(1, partitions.num_partitions());
        assert!(!partitions.is_empty());

        let kvs = memtable_util::build_key_values(
            metadata,
            "hello".to_string(),
            0,
            &[3000, 7000, 4000, 5000],
            2, // sequence 2, 3, 4, 5
        );
        // Writes 2 rows to the old partition and 1 row to a new partition.
        partitions.write(&kvs).unwrap();
        assert_eq!(2, partitions.num_partitions());

        partitions
    }

    #[test]
    fn test_write_multi_parts() {
        let metadata = memtable_util::metadata_for_test();
        let partitions = new_multi_partitions(&metadata);

        let parts = partitions.list_partitions();
        let iter = parts[0].memtable.iter(None, None, None).unwrap();
        let timestamps = collect_iter_timestamps(iter);
        assert_eq!(0, parts[0].memtable.id());
        assert_eq!(
            Timestamp::new_millisecond(0),
            parts[0].time_range.unwrap().min_timestamp
        );
        assert_eq!(
            Timestamp::new_millisecond(5000),
            parts[0].time_range.unwrap().max_timestamp
        );
        assert_eq!(&[0, 2000, 3000, 4000], &timestamps[..]);
        let iter = parts[1].memtable.iter(None, None, None).unwrap();
        assert_eq!(1, parts[1].memtable.id());
        let timestamps = collect_iter_timestamps(iter);
        assert_eq!(&[5000, 7000], &timestamps[..]);
        assert_eq!(
            Timestamp::new_millisecond(5000),
            parts[1].time_range.unwrap().min_timestamp
        );
        assert_eq!(
            Timestamp::new_millisecond(10000),
            parts[1].time_range.unwrap().max_timestamp
        );
    }

    #[test]
    fn test_new_with_part_duration() {
        let metadata = memtable_util::metadata_for_test();
        let builder = Arc::new(PartitionTreeMemtableBuilder::default());
        let partitions = TimePartitions::new(metadata.clone(), builder.clone(), 0, None);

        let new_parts = partitions.new_with_part_duration(Some(Duration::from_secs(5)));
        assert_eq!(Duration::from_secs(5), new_parts.part_duration().unwrap());
        assert_eq!(1, new_parts.next_memtable_id());

        // Won't update the duration if it's None.
        let new_parts = new_parts.new_with_part_duration(None);
        assert_eq!(Duration::from_secs(5), new_parts.part_duration().unwrap());
        // Don't need to create new memtables.
        assert_eq!(1, new_parts.next_memtable_id());

        let new_parts = new_parts.new_with_part_duration(Some(Duration::from_secs(10)));
        assert_eq!(Duration::from_secs(10), new_parts.part_duration().unwrap());
        // Don't need to create new memtables.
        assert_eq!(1, new_parts.next_memtable_id());

        let builder = Arc::new(PartitionTreeMemtableBuilder::default());
        let partitions = TimePartitions::new(metadata.clone(), builder.clone(), 0, None);
        // Need to build a new memtable as duration is still None.
        let new_parts = partitions.new_with_part_duration(None);
        assert!(new_parts.part_duration().is_none());
        assert_eq!(2, new_parts.next_memtable_id());
    }

    #[test]
    fn test_fork_empty() {
        let metadata = memtable_util::metadata_for_test();
        let builder = Arc::new(PartitionTreeMemtableBuilder::default());
        let partitions = TimePartitions::new(metadata.clone(), builder, 0, None);
        partitions.freeze().unwrap();
        let new_parts = partitions.fork(&metadata, None);
        assert!(new_parts.part_duration().is_none());
        assert_eq!(1, new_parts.list_partitions()[0].memtable.id());
        assert_eq!(2, new_parts.next_memtable_id());

        new_parts.freeze().unwrap();
        let new_parts = new_parts.fork(&metadata, Some(Duration::from_secs(5)));
        assert_eq!(Duration::from_secs(5), new_parts.part_duration().unwrap());
        assert_eq!(2, new_parts.list_partitions()[0].memtable.id());
        assert_eq!(3, new_parts.next_memtable_id());

        new_parts.freeze().unwrap();
        let new_parts = new_parts.fork(&metadata, None);
        // Won't update the duration.
        assert_eq!(Duration::from_secs(5), new_parts.part_duration().unwrap());
        assert_eq!(3, new_parts.list_partitions()[0].memtable.id());
        assert_eq!(4, new_parts.next_memtable_id());

        new_parts.freeze().unwrap();
        let new_parts = new_parts.fork(&metadata, Some(Duration::from_secs(10)));
        assert_eq!(Duration::from_secs(10), new_parts.part_duration().unwrap());
        assert_eq!(4, new_parts.list_partitions()[0].memtable.id());
        assert_eq!(5, new_parts.next_memtable_id());
    }

    #[test]
    fn test_fork_non_empty_none() {
        let metadata = memtable_util::metadata_for_test();
        let partitions = new_multi_partitions(&metadata);
        partitions.freeze().unwrap();

        // Won't update the duration.
        let new_parts = partitions.fork(&metadata, None);
        assert!(new_parts.is_empty());
        assert_eq!(Duration::from_secs(5), new_parts.part_duration().unwrap());
        assert_eq!(2, new_parts.list_partitions()[0].memtable.id());
        assert_eq!(3, new_parts.next_memtable_id());

        // Although we don't fork a memtable multiple times, we still add a test for it.
        let new_parts = partitions.fork(&metadata, Some(Duration::from_secs(10)));
        assert!(new_parts.is_empty());
        assert_eq!(Duration::from_secs(10), new_parts.part_duration().unwrap());
        assert_eq!(3, new_parts.list_partitions()[0].memtable.id());
        assert_eq!(4, new_parts.next_memtable_id());
    }
}