mito2/memtable/partition_tree/
partition.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Partition of a partition tree.
//!
//! We only support partitioning the tree by pre-defined internal columns.

use std::collections::{HashMap, HashSet};
use std::sync::{Arc, RwLock};
use std::time::{Duration, Instant};

use api::v1::SemanticType;
use common_recordbatch::filter::SimpleFilterEvaluator;
use store_api::codec::PrimaryKeyEncoding;
use store_api::metadata::RegionMetadataRef;
use store_api::metric_engine_consts::DATA_SCHEMA_TABLE_ID_COLUMN_NAME;
use store_api::storage::ColumnId;

use crate::error::Result;
use crate::memtable::key_values::KeyValue;
use crate::memtable::partition_tree::data::{DataBatch, DataParts, DATA_INIT_CAP};
use crate::memtable::partition_tree::dedup::DedupReader;
use crate::memtable::partition_tree::shard::{
    BoxedDataBatchSource, Shard, ShardMerger, ShardNode, ShardSource,
};
use crate::memtable::partition_tree::shard_builder::ShardBuilder;
use crate::memtable::partition_tree::{PartitionTreeConfig, PkId};
use crate::memtable::stats::WriteMetrics;
use crate::metrics::PARTITION_TREE_READ_STAGE_ELAPSED;
use crate::read::{Batch, BatchBuilder};
use crate::row_converter::{PrimaryKeyCodec, PrimaryKeyFilter};

/// Key of a partition.
pub type PartitionKey = u32;

/// A tree partition.
pub struct Partition {
    inner: RwLock<Inner>,
    /// Whether to dedup batches.
    dedup: bool,
}

pub type PartitionRef = Arc<Partition>;

impl Partition {
    /// Creates a new partition.
    pub fn new(metadata: RegionMetadataRef, config: &PartitionTreeConfig) -> Self {
        Partition {
            inner: RwLock::new(Inner::new(metadata, config)),
            dedup: config.dedup,
        }
    }

    /// Writes to the partition with a primary key.
    pub fn write_with_key(
        &self,
        primary_key: &mut Vec<u8>,
        row_codec: &dyn PrimaryKeyCodec,
        key_value: KeyValue,
        re_encode: bool,
        metrics: &mut WriteMetrics,
    ) -> Result<()> {
        let mut inner = self.inner.write().unwrap();
        // Freeze the shard builder if needed.
        if inner.shard_builder.should_freeze() {
            inner.freeze_active_shard()?;
        }

        // Finds key in shards, now we ensure one key only exists in one shard.
        if let Some(pk_id) = inner.find_key_in_shards(primary_key) {
            inner.write_to_shard(pk_id, &key_value)?;
            inner.num_rows += 1;
            return Ok(());
        }

        // Key does not yet exist in shard or builder, encode and insert the full primary key.
        if re_encode {
            match row_codec.encoding() {
                PrimaryKeyEncoding::Dense => {
                    // `primary_key` is sparse, re-encode the full primary key.
                    let sparse_key = primary_key.clone();
                    primary_key.clear();
                    row_codec.encode_key_value(&key_value, primary_key)?;
                    let pk_id = inner.shard_builder.write_with_key(
                        primary_key,
                        Some(&sparse_key),
                        &key_value,
                        metrics,
                    );
                    inner.pk_to_pk_id.insert(sparse_key, pk_id);
                }
                PrimaryKeyEncoding::Sparse => {
                    let sparse_key = primary_key.clone();
                    let pk_id = inner.shard_builder.write_with_key(
                        primary_key,
                        Some(&sparse_key),
                        &key_value,
                        metrics,
                    );
                    inner.pk_to_pk_id.insert(sparse_key, pk_id);
                }
            }
        } else {
            // `primary_key` is already the full primary key.
            let pk_id = inner
                .shard_builder
                .write_with_key(primary_key, None, &key_value, metrics);
            inner.pk_to_pk_id.insert(std::mem::take(primary_key), pk_id);
        };

        inner.num_rows += 1;
        Ok(())
    }

    /// Writes to the partition without a primary key.
    pub fn write_no_key(&self, key_value: KeyValue) -> Result<()> {
        let mut inner = self.inner.write().unwrap();
        // If no primary key, always write to the first shard.
        debug_assert!(!inner.shards.is_empty());
        debug_assert_eq!(1, inner.shard_builder.current_shard_id());

        // A dummy pk id.
        let pk_id = PkId {
            shard_id: 0,
            pk_index: 0,
        };
        inner.shards[0].write_with_pk_id(pk_id, &key_value)?;
        inner.num_rows += 1;

        Ok(())
    }

    fn build_primary_key_filter(
        need_prune_key: bool,
        metadata: &RegionMetadataRef,
        row_codec: &dyn PrimaryKeyCodec,
        filters: &Arc<Vec<SimpleFilterEvaluator>>,
    ) -> Option<Box<dyn PrimaryKeyFilter>> {
        if need_prune_key {
            let filter = row_codec.primary_key_filter(metadata, filters.clone());
            Some(filter)
        } else {
            None
        }
    }

    /// Scans data in the partition.
    pub fn read(&self, mut context: ReadPartitionContext) -> Result<PartitionReader> {
        let start = Instant::now();
        let (builder_source, shard_reader_builders) = {
            let inner = self.inner.read().unwrap();
            let mut shard_source = Vec::with_capacity(inner.shards.len() + 1);
            let builder_reader = if !inner.shard_builder.is_empty() {
                let builder_reader = inner.shard_builder.read(&mut context.pk_weights)?;
                Some(builder_reader)
            } else {
                None
            };
            for shard in &inner.shards {
                if !shard.is_empty() {
                    let shard_reader_builder = shard.read()?;
                    shard_source.push(shard_reader_builder);
                }
            }
            (builder_reader, shard_source)
        };

        context.metrics.num_shards += shard_reader_builders.len();

        let mut nodes = shard_reader_builders
            .into_iter()
            .map(|builder| {
                let primary_key_filter = Self::build_primary_key_filter(
                    context.need_prune_key,
                    &context.metadata,
                    context.row_codec.as_ref(),
                    &context.filters,
                );
                Ok(ShardNode::new(ShardSource::Shard(
                    builder.build(primary_key_filter)?,
                )))
            })
            .collect::<Result<Vec<_>>>()?;

        if let Some(builder) = builder_source {
            context.metrics.num_builder += 1;
            let primary_key_filter = Self::build_primary_key_filter(
                context.need_prune_key,
                &context.metadata,
                context.row_codec.as_ref(),
                &context.filters,
            );
            // Move the initialization of ShardBuilderReader out of read lock.
            let shard_builder_reader =
                builder.build(Some(&context.pk_weights), primary_key_filter)?;
            nodes.push(ShardNode::new(ShardSource::Builder(shard_builder_reader)));
        }

        // Creating a shard merger will invoke next so we do it outside the lock.
        let merger = ShardMerger::try_new(nodes)?;
        if self.dedup {
            let source = DedupReader::try_new(merger)?;
            context.metrics.build_partition_reader += start.elapsed();
            PartitionReader::new(context, Box::new(source))
        } else {
            context.metrics.build_partition_reader += start.elapsed();
            PartitionReader::new(context, Box::new(merger))
        }
    }

    /// Freezes the partition.
    pub fn freeze(&self) -> Result<()> {
        let mut inner = self.inner.write().unwrap();
        inner.freeze_active_shard()?;
        Ok(())
    }

    /// Forks the partition.
    ///
    /// Must freeze the partition before fork.
    pub fn fork(&self, metadata: &RegionMetadataRef, config: &PartitionTreeConfig) -> Partition {
        let (shards, shard_builder) = {
            let inner = self.inner.read().unwrap();
            debug_assert!(inner.shard_builder.is_empty());
            let shard_builder = ShardBuilder::new(
                metadata.clone(),
                config,
                inner.shard_builder.current_shard_id(),
            );
            let shards = inner
                .shards
                .iter()
                .map(|shard| shard.fork(metadata.clone()))
                .collect();

            (shards, shard_builder)
        };
        let pk_to_pk_id = {
            let mut inner = self.inner.write().unwrap();
            std::mem::take(&mut inner.pk_to_pk_id)
        };

        Partition {
            inner: RwLock::new(Inner {
                metadata: metadata.clone(),
                shard_builder,
                shards,
                num_rows: 0,
                pk_to_pk_id,
                frozen: false,
            }),
            dedup: self.dedup,
        }
    }

    /// Returns true if the partition has data.
    pub fn has_data(&self) -> bool {
        let inner = self.inner.read().unwrap();
        inner.num_rows > 0
    }

    /// Gets the stats of the partition.
    pub(crate) fn stats(&self) -> PartitionStats {
        let inner = self.inner.read().unwrap();
        let num_rows = inner.num_rows;
        let shard_num = inner.shards.len();
        let shared_memory_size = inner
            .shards
            .iter()
            .map(|shard| shard.shared_memory_size())
            .sum();
        PartitionStats {
            num_rows,
            shard_num,
            shared_memory_size,
        }
    }

    /// Get partition key from the key value.
    pub(crate) fn get_partition_key(key_value: &KeyValue, is_partitioned: bool) -> PartitionKey {
        if !is_partitioned {
            return PartitionKey::default();
        }

        key_value.partition_key()
    }

    /// Returns true if the region can be partitioned.
    pub(crate) fn has_multi_partitions(metadata: &RegionMetadataRef) -> bool {
        metadata
            .primary_key_columns()
            .next()
            .map(|meta| meta.column_schema.name == DATA_SCHEMA_TABLE_ID_COLUMN_NAME)
            .unwrap_or(false)
    }

    /// Returns true if this is a partition column.
    pub(crate) fn is_partition_column(name: &str) -> bool {
        name == DATA_SCHEMA_TABLE_ID_COLUMN_NAME
    }
}

pub(crate) struct PartitionStats {
    pub(crate) num_rows: usize,
    pub(crate) shard_num: usize,
    pub(crate) shared_memory_size: usize,
}

#[derive(Default)]
struct PartitionReaderMetrics {
    build_partition_reader: Duration,
    read_source: Duration,
    data_batch_to_batch: Duration,
    num_builder: usize,
    num_shards: usize,
}

/// Reader to scan rows in a partition.
///
/// It can merge rows from multiple shards.
pub struct PartitionReader {
    context: ReadPartitionContext,
    source: BoxedDataBatchSource,
}

impl PartitionReader {
    fn new(context: ReadPartitionContext, source: BoxedDataBatchSource) -> Result<Self> {
        let reader = Self { context, source };

        Ok(reader)
    }

    /// Returns true if the reader is valid.
    pub fn is_valid(&self) -> bool {
        self.source.is_valid()
    }

    /// Advances the reader.
    ///
    /// # Panics
    /// Panics if the reader is invalid.
    pub fn next(&mut self) -> Result<()> {
        self.advance_source()
    }

    /// Converts current data batch into a [Batch].
    ///
    /// # Panics
    /// Panics if the reader is invalid.
    pub fn convert_current_batch(&mut self) -> Result<Batch> {
        let start = Instant::now();
        let data_batch = self.source.current_data_batch();
        let batch = data_batch_to_batch(
            &self.context.metadata,
            &self.context.projection,
            self.source.current_key(),
            data_batch,
        )?;
        self.context.metrics.data_batch_to_batch += start.elapsed();
        Ok(batch)
    }

    pub(crate) fn into_context(self) -> ReadPartitionContext {
        self.context
    }

    fn advance_source(&mut self) -> Result<()> {
        let read_source = Instant::now();
        self.source.next()?;
        self.context.metrics.read_source += read_source.elapsed();
        Ok(())
    }
}

/// Structs to reuse across readers to avoid allocating for each reader.
pub(crate) struct ReadPartitionContext {
    metadata: RegionMetadataRef,
    row_codec: Arc<dyn PrimaryKeyCodec>,
    projection: HashSet<ColumnId>,
    filters: Arc<Vec<SimpleFilterEvaluator>>,
    /// Buffer to store pk weights.
    pk_weights: Vec<u16>,
    need_prune_key: bool,
    metrics: PartitionReaderMetrics,
}

impl Drop for ReadPartitionContext {
    fn drop(&mut self) {
        let partition_read_source = self.metrics.read_source.as_secs_f64();
        PARTITION_TREE_READ_STAGE_ELAPSED
            .with_label_values(&["partition_read_source"])
            .observe(partition_read_source);
        let partition_data_batch_to_batch = self.metrics.data_batch_to_batch.as_secs_f64();
        PARTITION_TREE_READ_STAGE_ELAPSED
            .with_label_values(&["partition_data_batch_to_batch"])
            .observe(partition_data_batch_to_batch);

        common_telemetry::debug!(
            "TreeIter partitions metrics, \
            num_builder: {}, \
            num_shards: {}, \
            build_partition_reader: {}s, \
            partition_read_source: {}s, \
            partition_data_batch_to_batch: {}s",
            self.metrics.num_builder,
            self.metrics.num_shards,
            self.metrics.build_partition_reader.as_secs_f64(),
            partition_read_source,
            partition_data_batch_to_batch,
        );
    }
}

impl ReadPartitionContext {
    pub(crate) fn new(
        metadata: RegionMetadataRef,
        row_codec: Arc<dyn PrimaryKeyCodec>,
        projection: HashSet<ColumnId>,
        filters: Arc<Vec<SimpleFilterEvaluator>>,
    ) -> ReadPartitionContext {
        let need_prune_key = Self::need_prune_key(&metadata, &filters);
        ReadPartitionContext {
            metadata,
            row_codec,
            projection,
            filters,
            pk_weights: Vec::new(),
            need_prune_key,
            metrics: Default::default(),
        }
    }

    /// Does filter contain predicate on primary key columns after pruning the
    /// partition column.
    fn need_prune_key(metadata: &RegionMetadataRef, filters: &[SimpleFilterEvaluator]) -> bool {
        for filter in filters {
            // We already pruned partitions before so we skip the partition column.
            if Partition::is_partition_column(filter.column_name()) {
                continue;
            }
            let Some(column) = metadata.column_by_name(filter.column_name()) else {
                continue;
            };
            if column.semantic_type != SemanticType::Tag {
                continue;
            }

            return true;
        }

        false
    }
}

// TODO(yingwen): Pushdown projection to shard readers.
/// Converts a [DataBatch] to a [Batch].
fn data_batch_to_batch(
    metadata: &RegionMetadataRef,
    projection: &HashSet<ColumnId>,
    key: Option<&[u8]>,
    data_batch: DataBatch,
) -> Result<Batch> {
    let record_batch = data_batch.slice_record_batch();
    let primary_key = key.map(|k| k.to_vec()).unwrap_or_default();
    let mut builder = BatchBuilder::new(primary_key);
    builder
        .timestamps_array(record_batch.column(1).clone())?
        .sequences_array(record_batch.column(2).clone())?
        .op_types_array(record_batch.column(3).clone())?;

    if record_batch.num_columns() <= 4 {
        // No fields.
        return builder.build();
    }

    // Iterate all field columns.
    for (array, field) in record_batch
        .columns()
        .iter()
        .zip(record_batch.schema().fields().iter())
        .skip(4)
    {
        // TODO(yingwen): Avoid finding column by name. We know the schema of a DataBatch.
        // Safety: metadata should contain all fields.
        let column_id = metadata.column_by_name(field.name()).unwrap().column_id;
        if !projection.contains(&column_id) {
            continue;
        }
        builder.push_field_array(column_id, array.clone())?;
    }

    builder.build()
}

/// Inner struct of the partition.
///
/// A key only exists in one shard.
struct Inner {
    metadata: RegionMetadataRef,
    /// Map to index pk to pk id.
    pk_to_pk_id: HashMap<Vec<u8>, PkId>,
    /// Shard whose dictionary is active.
    shard_builder: ShardBuilder,
    /// Shards with frozen dictionary.
    shards: Vec<Shard>,
    num_rows: usize,
    frozen: bool,
}

impl Inner {
    fn new(metadata: RegionMetadataRef, config: &PartitionTreeConfig) -> Self {
        let (shards, current_shard_id) = if metadata.primary_key.is_empty() {
            let data_parts = DataParts::new(metadata.clone(), DATA_INIT_CAP, config.dedup);
            (
                vec![Shard::new(
                    0,
                    None,
                    data_parts,
                    config.dedup,
                    config.data_freeze_threshold,
                )],
                1,
            )
        } else {
            (Vec::new(), 0)
        };
        let shard_builder = ShardBuilder::new(metadata.clone(), config, current_shard_id);
        Self {
            metadata,
            pk_to_pk_id: HashMap::new(),
            shard_builder,
            shards,
            num_rows: 0,
            frozen: false,
        }
    }

    fn find_key_in_shards(&self, primary_key: &[u8]) -> Option<PkId> {
        assert!(!self.frozen);
        self.pk_to_pk_id.get(primary_key).copied()
    }

    fn write_to_shard(&mut self, pk_id: PkId, key_value: &KeyValue) -> Result<()> {
        if pk_id.shard_id == self.shard_builder.current_shard_id() {
            self.shard_builder.write_with_pk_id(pk_id, key_value);
            return Ok(());
        }

        // Safety: We find the shard by shard id.
        let shard = self
            .shards
            .iter_mut()
            .find(|shard| shard.shard_id == pk_id.shard_id)
            .unwrap();
        shard.write_with_pk_id(pk_id, key_value)?;
        self.num_rows += 1;

        Ok(())
    }

    fn freeze_active_shard(&mut self) -> Result<()> {
        if let Some(shard) = self
            .shard_builder
            .finish(self.metadata.clone(), &mut self.pk_to_pk_id)?
        {
            self.shards.push(shard);
        }
        Ok(())
    }
}