mito2/memtable/partition_tree/
dict.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Key dictionary of a shard.

use std::collections::BTreeMap;
use std::sync::Arc;

use datatypes::arrow::array::{Array, ArrayBuilder, BinaryArray, BinaryBuilder};

use crate::memtable::partition_tree::PkIndex;
use crate::memtable::stats::WriteMetrics;
use crate::metrics::MEMTABLE_DICT_BYTES;

/// Maximum keys in a [DictBlock].
const MAX_KEYS_PER_BLOCK: u16 = 256;

/// The key is mcmp-encoded primary keys, while the values are the pk index and
/// optionally sparsely encoded primary keys.
type PkIndexMap = BTreeMap<Vec<u8>, (PkIndex, Option<Vec<u8>>)>;

/// Builder to build a key dictionary.
pub struct KeyDictBuilder {
    /// Max keys of the dictionary.
    capacity: usize,
    /// Number of keys in the builder.
    num_keys: usize,
    /// Maps primary key to pk index.
    pk_to_index: PkIndexMap,
    /// Buffer for active dict block.
    key_buffer: KeyBuffer,
    /// Dictionary blocks.
    dict_blocks: Vec<DictBlock>,
    /// Bytes allocated by keys in the index.
    key_bytes_in_index: usize,
}

impl KeyDictBuilder {
    /// Creates a new builder that can hold up to `capacity` keys.
    pub fn new(capacity: usize) -> Self {
        Self {
            capacity,
            num_keys: 0,
            pk_to_index: BTreeMap::new(),
            key_buffer: KeyBuffer::new(MAX_KEYS_PER_BLOCK.into()),
            dict_blocks: Vec::with_capacity(capacity / MAX_KEYS_PER_BLOCK as usize + 1),
            key_bytes_in_index: 0,
        }
    }

    /// Returns true if the builder is full.
    pub fn is_full(&self) -> bool {
        self.num_keys >= self.capacity
    }

    /// Adds the key to the builder and returns its index if the builder is not full.
    ///
    /// # Panics
    /// Panics if the builder is full.
    pub fn insert_key(
        &mut self,
        full_primary_key: &[u8],
        sparse_key: Option<&[u8]>,
        metrics: &mut WriteMetrics,
    ) -> PkIndex {
        assert!(!self.is_full());

        if let Some(pk_index) = self.pk_to_index.get(full_primary_key).map(|v| v.0) {
            // Already in the builder.
            return pk_index;
        }

        if self.key_buffer.len() >= MAX_KEYS_PER_BLOCK.into() {
            // The write buffer is full. Freeze a dict block.
            let dict_block = self.key_buffer.finish(false);
            self.dict_blocks.push(dict_block);
        }

        // Safety: we have checked the buffer length.
        let pk_index = self.key_buffer.push_key(full_primary_key);
        let (sparse_key, sparse_key_len) = if let Some(sparse_key) = sparse_key {
            (Some(sparse_key.to_vec()), sparse_key.len())
        } else {
            (None, 0)
        };
        self.pk_to_index
            .insert(full_primary_key.to_vec(), (pk_index, sparse_key));
        self.num_keys += 1;

        // Since we store the key twice so the bytes usage doubled.
        metrics.key_bytes += full_primary_key.len() * 2 + sparse_key_len;
        self.key_bytes_in_index += full_primary_key.len();

        // Adds key size of index to the metrics.
        MEMTABLE_DICT_BYTES.add((full_primary_key.len() + sparse_key_len) as i64);

        pk_index
    }

    /// Memory size of the builder.
    #[cfg(test)]
    pub fn memory_size(&self) -> usize {
        self.key_bytes_in_index
            + self.key_buffer.buffer_memory_size()
            + self
                .dict_blocks
                .iter()
                .map(|block| block.buffer_memory_size())
                .sum::<usize>()
    }

    /// Finishes the builder. The key of the second BTreeMap is sparse-encoded bytes.
    pub fn finish(&mut self) -> Option<(KeyDict, BTreeMap<Vec<u8>, PkIndex>)> {
        if self.key_buffer.is_empty() {
            return None;
        }
        let mut pk_to_index_map = BTreeMap::new();

        // Finishes current dict block and resets the pk index.
        let dict_block = self.key_buffer.finish(true);
        self.dict_blocks.push(dict_block);
        // Computes key position and then alter pk index.
        let mut key_positions = vec![0; self.pk_to_index.len()];

        for (i, (_full_pk, (pk_index, sparse_key))) in (std::mem::take(&mut self.pk_to_index))
            .into_iter()
            .enumerate()
        {
            // The position of the i-th key is the old pk index.
            key_positions[i] = pk_index;
            if let Some(sparse_key) = sparse_key {
                pk_to_index_map.insert(sparse_key, i as PkIndex);
            }
        }

        self.num_keys = 0;
        let key_bytes_in_index = self.key_bytes_in_index;
        self.key_bytes_in_index = 0;

        Some((
            KeyDict {
                dict_blocks: std::mem::take(&mut self.dict_blocks),
                key_positions,
                key_bytes_in_index,
            },
            pk_to_index_map,
        ))
    }

    /// Reads the builder.
    pub fn read(&self) -> DictBuilderReader {
        let sorted_pk_indices = self.pk_to_index.values().map(|v| v.0).collect();
        let block = self.key_buffer.finish_cloned();
        let mut blocks = Vec::with_capacity(self.dict_blocks.len() + 1);
        blocks.extend_from_slice(&self.dict_blocks);
        blocks.push(block);

        DictBuilderReader::new(blocks, sorted_pk_indices)
    }
}

impl Drop for KeyDictBuilder {
    fn drop(&mut self) {
        MEMTABLE_DICT_BYTES.sub(self.key_bytes_in_index as i64);
    }
}

/// Reader to scan the [KeyDictBuilder].
#[derive(Default)]
pub struct DictBuilderReader {
    blocks: Vec<DictBlock>,
    sorted_pk_indices: Vec<PkIndex>,
}

impl DictBuilderReader {
    fn new(blocks: Vec<DictBlock>, sorted_pk_indices: Vec<PkIndex>) -> Self {
        Self {
            blocks,
            sorted_pk_indices,
        }
    }

    /// Returns the number of keys.
    #[cfg(test)]
    pub fn num_keys(&self) -> usize {
        self.sorted_pk_indices.len()
    }

    /// Gets the i-th pk index.
    #[cfg(test)]
    pub fn pk_index(&self, offset: usize) -> PkIndex {
        self.sorted_pk_indices[offset]
    }

    /// Gets the i-th key.
    #[cfg(test)]
    pub fn key(&self, offset: usize) -> &[u8] {
        let pk_index = self.pk_index(offset);
        self.key_by_pk_index(pk_index)
    }

    /// Gets the key by the pk index.
    pub fn key_by_pk_index(&self, pk_index: PkIndex) -> &[u8] {
        let block_idx = pk_index / MAX_KEYS_PER_BLOCK;
        self.blocks[block_idx as usize].key_by_pk_index(pk_index)
    }

    /// Returns pk weights to sort a data part and replaces pk indices.
    pub(crate) fn pk_weights_to_sort_data(&self, pk_weights: &mut Vec<u16>) {
        compute_pk_weights(&self.sorted_pk_indices, pk_weights)
    }
}

/// Returns pk weights to sort a data part and replaces pk indices.
fn compute_pk_weights(sorted_pk_indices: &[PkIndex], pk_weights: &mut Vec<u16>) {
    pk_weights.resize(sorted_pk_indices.len(), 0);
    for (weight, pk_index) in sorted_pk_indices.iter().enumerate() {
        pk_weights[*pk_index as usize] = weight as u16;
    }
}

/// A key dictionary.
#[derive(Default)]
pub struct KeyDict {
    // TODO(yingwen): We can use key_positions to do a binary search.
    /// Unsorted key blocks.
    dict_blocks: Vec<DictBlock>,
    /// Maps pk index to position of the key in [Self::dict_blocks].
    key_positions: Vec<PkIndex>,
    /// Bytes of keys in the index.
    key_bytes_in_index: usize,
}

pub type KeyDictRef = Arc<KeyDict>;

impl KeyDict {
    /// Gets the primary key by its index.
    ///
    /// # Panics
    /// Panics if the index is invalid.
    pub fn key_by_pk_index(&self, index: PkIndex) -> &[u8] {
        let position = self.key_positions[index as usize];
        let block_index = position / MAX_KEYS_PER_BLOCK;
        self.dict_blocks[block_index as usize].key_by_pk_index(position)
    }

    /// Returns pk weights to sort a data part and replaces pk indices.
    pub(crate) fn pk_weights_to_sort_data(&self) -> Vec<u16> {
        let mut pk_weights = Vec::with_capacity(self.key_positions.len());
        compute_pk_weights(&self.key_positions, &mut pk_weights);
        pk_weights
    }

    /// Returns the shared memory size.
    pub(crate) fn shared_memory_size(&self) -> usize {
        self.key_bytes_in_index
            + self
                .dict_blocks
                .iter()
                .map(|block| block.buffer_memory_size())
                .sum::<usize>()
    }
}

impl Drop for KeyDict {
    fn drop(&mut self) {
        MEMTABLE_DICT_BYTES.sub(self.key_bytes_in_index as i64);
    }
}

/// Buffer to store unsorted primary keys.
struct KeyBuffer {
    key_builder: BinaryBuilder,
    next_pk_index: usize,
}

impl KeyBuffer {
    fn new(item_capacity: usize) -> Self {
        Self {
            key_builder: BinaryBuilder::with_capacity(item_capacity, 0),
            next_pk_index: 0,
        }
    }

    /// Pushes a new key and returns its pk index.
    ///
    /// # Panics
    /// Panics if the [PkIndex] type cannot represent the index.
    fn push_key(&mut self, key: &[u8]) -> PkIndex {
        let pk_index = self.next_pk_index.try_into().unwrap();
        self.next_pk_index += 1;
        self.key_builder.append_value(key);

        pk_index
    }

    /// Returns number of items in the buffer.
    fn len(&self) -> usize {
        self.key_builder.len()
    }

    /// Returns whether the buffer is empty.
    fn is_empty(&self) -> bool {
        self.key_builder.is_empty()
    }

    /// Returns the buffer size of the builder.
    #[cfg(test)]
    fn buffer_memory_size(&self) -> usize {
        self.key_builder.values_slice().len()
            + std::mem::size_of_val(self.key_builder.offsets_slice())
            + self
                .key_builder
                .validity_slice()
                .map(|v| v.len())
                .unwrap_or(0)
    }

    fn finish(&mut self, reset_index: bool) -> DictBlock {
        let primary_key = self.key_builder.finish();
        // Reserve capacity for the new builder. `finish()` the builder will leave the builder
        // empty with capacity 0.
        // TODO(yingwen): Do we need to reserve capacity for data?
        self.key_builder = BinaryBuilder::with_capacity(primary_key.len(), 0);
        if reset_index {
            self.next_pk_index = 0;
        }

        DictBlock::new(primary_key)
    }

    fn finish_cloned(&self) -> DictBlock {
        let primary_key = self.key_builder.finish_cloned();

        DictBlock::new(primary_key)
    }
}

/// A block in the key dictionary.
///
/// The block is cheap to clone. Keys in the block are unsorted.
#[derive(Clone)]
struct DictBlock {
    /// Container of keys in the block.
    keys: BinaryArray,
}

impl DictBlock {
    fn new(keys: BinaryArray) -> Self {
        let buffer_size = keys.get_buffer_memory_size();
        MEMTABLE_DICT_BYTES.add(buffer_size as i64);

        Self { keys }
    }

    fn key_by_pk_index(&self, index: PkIndex) -> &[u8] {
        let pos = index % MAX_KEYS_PER_BLOCK;
        self.keys.value(pos as usize)
    }

    fn buffer_memory_size(&self) -> usize {
        self.keys.get_buffer_memory_size()
    }
}

impl Drop for DictBlock {
    fn drop(&mut self) {
        let buffer_size = self.keys.get_buffer_memory_size();
        MEMTABLE_DICT_BYTES.sub(buffer_size as i64);
    }
}

#[cfg(test)]
mod tests {
    use rand::Rng;

    use super::*;

    fn prepare_input_keys(num_keys: usize) -> Vec<Vec<u8>> {
        let prefix = ["a", "b", "c", "d", "e", "f"];
        let mut rng = rand::rng();
        let mut keys = Vec::with_capacity(num_keys);
        for i in 0..num_keys {
            let prefix_idx = rng.random_range(0..prefix.len());
            // We don't need to decode the primary key in index's test so we format the string
            // into the key.
            let key = format!("{}{}", prefix[prefix_idx], i);
            keys.push(key.into_bytes());
        }

        keys
    }

    #[test]
    fn test_write_scan_builder() {
        let num_keys = MAX_KEYS_PER_BLOCK * 2 + MAX_KEYS_PER_BLOCK / 2;
        let keys = prepare_input_keys(num_keys.into());

        let mut builder = KeyDictBuilder::new((MAX_KEYS_PER_BLOCK * 3).into());
        let mut last_pk_index = None;
        let mut metrics = WriteMetrics::default();
        for key in &keys {
            assert!(!builder.is_full());
            let pk_index = builder.insert_key(key, None, &mut metrics);
            last_pk_index = Some(pk_index);
        }
        assert_eq!(num_keys - 1, last_pk_index.unwrap());
        let key_bytes: usize = keys.iter().map(|key| key.len() * 2).sum();
        assert_eq!(key_bytes, metrics.key_bytes);

        let mut expect: Vec<_> = keys
            .into_iter()
            .enumerate()
            .map(|(i, key)| (key, i as PkIndex))
            .collect();
        expect.sort_unstable_by(|a, b| a.0.cmp(&b.0));

        let mut result = Vec::with_capacity(expect.len());
        let reader = builder.read();
        for i in 0..reader.num_keys() {
            result.push((reader.key(i).to_vec(), reader.pk_index(i)));
        }
        assert_eq!(expect, result);
    }

    #[test]
    fn test_dict_memory_size() {
        let mut builder = KeyDictBuilder::new((MAX_KEYS_PER_BLOCK * 3).into());
        let mut metrics = WriteMetrics::default();
        // 513 keys
        let num_keys = MAX_KEYS_PER_BLOCK * 2 + 1;
        // Writes 2 blocks
        for i in 0..num_keys {
            // Each key is 5 bytes.
            let key = format!("{i:05}");
            builder.insert_key(key.as_bytes(), None, &mut metrics);
        }
        let key_bytes = num_keys as usize * 5;
        assert_eq!(key_bytes * 2, metrics.key_bytes);
        assert_eq!(key_bytes, builder.key_bytes_in_index);
        assert_eq!(8850, builder.memory_size());

        let (dict, _) = builder.finish().unwrap();
        assert_eq!(0, builder.key_bytes_in_index);
        assert_eq!(key_bytes, dict.key_bytes_in_index);
        assert!(dict.shared_memory_size() > key_bytes);
    }

    #[test]
    fn test_builder_finish() {
        let mut builder = KeyDictBuilder::new((MAX_KEYS_PER_BLOCK * 2).into());
        let mut metrics = WriteMetrics::default();
        for i in 0..MAX_KEYS_PER_BLOCK * 2 {
            let key = format!("{i:010}");
            assert!(!builder.is_full());
            builder.insert_key(key.as_bytes(), None, &mut metrics);
        }
        assert!(builder.is_full());
        builder.finish();

        assert!(!builder.is_full());
        assert_eq!(0, builder.insert_key(b"a0", None, &mut metrics));
    }
}