mito2/memtable/
key_values.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashMap;

use api::v1::{ColumnSchema, Mutation, OpType, Row, Rows};
use datatypes::prelude::ConcreteDataType;
use datatypes::value::ValueRef;
use memcomparable::Deserializer;
use store_api::codec::{infer_primary_key_encoding_from_hint, PrimaryKeyEncoding};
use store_api::metadata::RegionMetadata;
use store_api::storage::SequenceNumber;

use crate::row_converter::{SortField, COLUMN_ID_ENCODE_SIZE};

/// Key value view of a mutation.
#[derive(Debug)]
pub struct KeyValues {
    /// Mutation to read.
    ///
    /// This mutation must be a valid mutation and rows in the mutation
    /// must not be `None`.
    pub(crate) mutation: Mutation,
    /// Key value read helper.
    helper: SparseReadRowHelper,
    /// Primary key encoding hint.
    primary_key_encoding: PrimaryKeyEncoding,
}

impl KeyValues {
    /// Creates [KeyValues] from specific `mutation`.
    ///
    /// Returns `None` if `rows` of the `mutation` is `None`.
    pub fn new(metadata: &RegionMetadata, mutation: Mutation) -> Option<KeyValues> {
        let rows = mutation.rows.as_ref()?;
        let primary_key_encoding =
            infer_primary_key_encoding_from_hint(mutation.write_hint.as_ref());
        let helper = SparseReadRowHelper::new(metadata, rows, primary_key_encoding);

        Some(KeyValues {
            mutation,
            helper,
            primary_key_encoding,
        })
    }

    /// Returns a key value iterator.
    pub fn iter(&self) -> impl Iterator<Item = KeyValue> {
        let rows = self.mutation.rows.as_ref().unwrap();
        let schema = &rows.schema;
        rows.rows.iter().enumerate().map(|(idx, row)| {
            KeyValue {
                row,
                schema,
                helper: &self.helper,
                sequence: self.mutation.sequence + idx as u64, // Calculate sequence for each row.
                // Safety: This is a valid mutation.
                op_type: OpType::try_from(self.mutation.op_type).unwrap(),
                primary_key_encoding: self.primary_key_encoding,
            }
        })
    }

    /// Returns number of rows.
    pub fn num_rows(&self) -> usize {
        // Safety: rows is not None.
        self.mutation.rows.as_ref().unwrap().rows.len()
    }

    /// Returns if this container is empty
    pub fn is_empty(&self) -> bool {
        self.mutation.rows.is_none()
    }

    /// Return the max sequence in this container.
    ///
    /// When the mutation has no rows, the sequence is the same as the mutation sequence.
    pub fn max_sequence(&self) -> SequenceNumber {
        let mut sequence = self.mutation.sequence;
        let num_rows = self.mutation.rows.as_ref().unwrap().rows.len() as u64;
        sequence += num_rows;
        if num_rows > 0 {
            sequence -= 1;
        }

        sequence
    }
}

/// Key value view of a mutation.
#[derive(Debug)]
pub struct KeyValuesRef<'a> {
    /// Mutation to read.
    ///
    /// This mutation must be a valid mutation and rows in the mutation
    /// must not be `None`.
    mutation: &'a Mutation,
    /// Key value read helper.
    helper: SparseReadRowHelper,
    /// Primary key encoding hint.
    primary_key_encoding: PrimaryKeyEncoding,
}

impl<'a> KeyValuesRef<'a> {
    /// Creates [crate::memtable::KeyValues] from specific `mutation`.
    ///
    /// Returns `None` if `rows` of the `mutation` is `None`.
    pub fn new(metadata: &RegionMetadata, mutation: &'a Mutation) -> Option<KeyValuesRef<'a>> {
        let rows = mutation.rows.as_ref()?;
        let primary_key_encoding =
            infer_primary_key_encoding_from_hint(mutation.write_hint.as_ref());
        let helper = SparseReadRowHelper::new(metadata, rows, primary_key_encoding);

        Some(KeyValuesRef {
            mutation,
            helper,
            primary_key_encoding,
        })
    }

    /// Returns a key value iterator.
    pub fn iter(&self) -> impl Iterator<Item = KeyValue> {
        let rows = self.mutation.rows.as_ref().unwrap();
        let schema = &rows.schema;
        rows.rows.iter().enumerate().map(|(idx, row)| {
            KeyValue {
                row,
                schema,
                helper: &self.helper,
                sequence: self.mutation.sequence + idx as u64, // Calculate sequence for each row.
                // Safety: This is a valid mutation.
                op_type: OpType::try_from(self.mutation.op_type).unwrap(),
                primary_key_encoding: self.primary_key_encoding,
            }
        })
    }

    /// Returns number of rows.
    pub fn num_rows(&self) -> usize {
        // Safety: rows is not None.
        self.mutation.rows.as_ref().unwrap().rows.len()
    }
}

/// Key value view of a row.
///
/// A key value view divides primary key columns and field (value) columns.
/// Primary key columns have the same order as region's primary key. Field
/// columns are ordered by their position in the region schema (The same order
/// as users defined while creating the region).
#[derive(Debug, Clone, Copy)]
pub struct KeyValue<'a> {
    row: &'a Row,
    schema: &'a Vec<ColumnSchema>,
    helper: &'a SparseReadRowHelper,
    sequence: SequenceNumber,
    op_type: OpType,
    primary_key_encoding: PrimaryKeyEncoding,
}

impl KeyValue<'_> {
    /// Returns primary key encoding.
    pub fn primary_key_encoding(&self) -> PrimaryKeyEncoding {
        self.primary_key_encoding
    }

    /// Returns the partition key.
    pub fn partition_key(&self) -> u32 {
        // TODO(yingwen): refactor this code
        if self.primary_key_encoding == PrimaryKeyEncoding::Sparse {
            let Some(primary_key) = self.primary_keys().next() else {
                return 0;
            };
            let key = primary_key.as_binary().unwrap().unwrap();

            let mut deserializer = Deserializer::new(key);
            deserializer.advance(COLUMN_ID_ENCODE_SIZE);
            let field = SortField::new(ConcreteDataType::uint32_datatype());
            let table_id = field.deserialize(&mut deserializer).unwrap();
            table_id.as_value_ref().as_u32().unwrap().unwrap()
        } else {
            let Some(value) = self.primary_keys().next() else {
                return 0;
            };

            value.as_u32().unwrap().unwrap()
        }
    }

    /// Get primary key columns.
    pub fn primary_keys(&self) -> impl Iterator<Item = ValueRef> {
        self.helper.indices[..self.helper.num_primary_key_column]
            .iter()
            .map(|idx| match idx {
                Some(i) => api::helper::pb_value_to_value_ref(
                    &self.row.values[*i],
                    &self.schema[*i].datatype_extension,
                ),
                None => ValueRef::Null,
            })
    }

    /// Get field columns.
    pub fn fields(&self) -> impl Iterator<Item = ValueRef> {
        self.helper.indices[self.helper.num_primary_key_column + 1..]
            .iter()
            .map(|idx| match idx {
                Some(i) => api::helper::pb_value_to_value_ref(
                    &self.row.values[*i],
                    &self.schema[*i].datatype_extension,
                ),
                None => ValueRef::Null,
            })
    }

    /// Get timestamp.
    pub fn timestamp(&self) -> ValueRef {
        // Timestamp is primitive, we clone it.
        let index = self.helper.indices[self.helper.num_primary_key_column].unwrap();
        api::helper::pb_value_to_value_ref(
            &self.row.values[index],
            &self.schema[index].datatype_extension,
        )
    }

    /// Get number of primary key columns.
    pub fn num_primary_keys(&self) -> usize {
        self.helper.num_primary_key_column
    }

    /// Get number of field columns.
    pub fn num_fields(&self) -> usize {
        self.helper.indices.len() - self.helper.num_primary_key_column - 1
    }

    /// Get sequence.
    pub fn sequence(&self) -> SequenceNumber {
        self.sequence
    }

    /// Get op type.
    pub fn op_type(&self) -> OpType {
        self.op_type
    }
}

/// Helper to read rows in key, value order for sparse data.
#[derive(Debug)]
struct SparseReadRowHelper {
    /// Key and value column indices.
    ///
    /// `indices[..num_primary_key_column]` are primary key columns, `indices[num_primary_key_column]`
    /// is the timestamp column and remainings are field columns.
    indices: Vec<Option<usize>>,
    /// Number of primary key columns.
    num_primary_key_column: usize,
}

impl SparseReadRowHelper {
    /// Creates a [SparseReadRowHelper] for specific `rows`.
    ///
    /// # Panics
    /// Time index column must exist.
    fn new(
        metadata: &RegionMetadata,
        rows: &Rows,
        primary_key_encoding: PrimaryKeyEncoding,
    ) -> SparseReadRowHelper {
        if primary_key_encoding == PrimaryKeyEncoding::Sparse {
            // We can skip build the indices for sparse primary key encoding.
            // The order of the columns is encoded primary key, timestamp, field columns.
            let indices = rows
                .schema
                .iter()
                .enumerate()
                .map(|(index, _)| Some(index))
                .collect();
            return SparseReadRowHelper {
                indices,
                num_primary_key_column: 1,
            };
        }
        // Build a name to index mapping for rows.
        let name_to_index: HashMap<_, _> = rows
            .schema
            .iter()
            .enumerate()
            .map(|(index, col)| (&col.column_name, index))
            .collect();
        let mut indices = Vec::with_capacity(metadata.column_metadatas.len());

        // Get primary key indices.
        for pk_column_id in &metadata.primary_key {
            // Safety: Id comes from primary key.
            let column = metadata.column_by_id(*pk_column_id).unwrap();
            let index = name_to_index.get(&column.column_schema.name);
            indices.push(index.copied());
        }
        // Get timestamp index.
        // Safety: time index must exist
        let ts_index = name_to_index
            .get(&metadata.time_index_column().column_schema.name)
            .unwrap();
        indices.push(Some(*ts_index));

        // Iterate columns and find field columns.
        for column in metadata.field_columns() {
            // Get index in request for each field column.
            let index = name_to_index.get(&column.column_schema.name);
            indices.push(index.copied());
        }

        SparseReadRowHelper {
            indices,
            num_primary_key_column: metadata.primary_key.len(),
        }
    }
}

#[cfg(test)]
mod tests {
    use api::v1::{self, ColumnDataType, SemanticType};

    use super::*;
    use crate::test_util::i64_value;
    use crate::test_util::meta_util::TestRegionMetadataBuilder;

    const TS_NAME: &str = "ts";
    const START_SEQ: SequenceNumber = 100;

    /// Creates a region: `ts, k0, k1, ..., v0, v1, ...`
    fn new_region_metadata(num_tags: usize, num_fields: usize) -> RegionMetadata {
        TestRegionMetadataBuilder::default()
            .ts_name(TS_NAME)
            .num_tags(num_tags)
            .num_fields(num_fields)
            .build()
    }

    /// Creates rows `[ 0, 1, ..., n ] x num_rows`
    fn new_rows(column_names: &[&str], num_rows: usize) -> Rows {
        let mut rows = Vec::with_capacity(num_rows);
        for _ in 0..num_rows {
            // For simplicity, we use i64 for timestamp millisecond type. This violates the column schema
            // but it's acceptable for tests.
            let values: Vec<_> = (0..column_names.len())
                .map(|idx| i64_value(idx as i64))
                .collect();
            rows.push(Row { values });
        }

        let schema = column_names
            .iter()
            .map(|column_name| {
                let datatype = if *column_name == TS_NAME {
                    ColumnDataType::TimestampMillisecond as i32
                } else {
                    ColumnDataType::Int64 as i32
                };
                let semantic_type = if column_name.starts_with('k') {
                    SemanticType::Tag as i32
                } else if column_name.starts_with('v') {
                    SemanticType::Field as i32
                } else {
                    SemanticType::Timestamp as i32
                };
                v1::ColumnSchema {
                    column_name: column_name.to_string(),
                    datatype,
                    semantic_type,
                    ..Default::default()
                }
            })
            .collect();

        Rows { rows, schema }
    }

    fn new_mutation(column_names: &[&str], num_rows: usize) -> Mutation {
        let rows = new_rows(column_names, num_rows);
        Mutation {
            op_type: OpType::Put as i32,
            sequence: START_SEQ,
            rows: Some(rows),
            write_hint: None,
        }
    }

    fn check_key_values(
        kvs: &KeyValues,
        num_rows: usize,
        keys: &[Option<i64>],
        ts: i64,
        values: &[Option<i64>],
    ) {
        assert_eq!(num_rows, kvs.num_rows());
        let mut expect_seq = START_SEQ;
        let expect_ts = ValueRef::Int64(ts);
        for kv in kvs.iter() {
            assert_eq!(expect_seq, kv.sequence());
            expect_seq += 1;
            assert_eq!(OpType::Put, kv.op_type);
            assert_eq!(keys.len(), kv.num_primary_keys());
            assert_eq!(values.len(), kv.num_fields());

            assert_eq!(expect_ts, kv.timestamp());
            let expect_keys: Vec<_> = keys.iter().map(|k| ValueRef::from(*k)).collect();
            let actual_keys: Vec<_> = kv.primary_keys().collect();
            assert_eq!(expect_keys, actual_keys);
            let expect_values: Vec<_> = values.iter().map(|v| ValueRef::from(*v)).collect();
            let actual_values: Vec<_> = kv.fields().collect();
            assert_eq!(expect_values, actual_values);
        }
    }

    #[test]
    fn test_empty_key_values() {
        let meta = new_region_metadata(1, 1);
        let mutation = Mutation {
            op_type: OpType::Put as i32,
            sequence: 100,
            rows: None,
            write_hint: None,
        };
        let kvs = KeyValues::new(&meta, mutation);
        assert!(kvs.is_none());
    }

    #[test]
    fn test_ts_only() {
        let meta = new_region_metadata(0, 0);
        let mutation = new_mutation(&["ts"], 2);
        let kvs = KeyValues::new(&meta, mutation).unwrap();
        check_key_values(&kvs, 2, &[], 0, &[]);
    }

    #[test]
    fn test_no_field() {
        let meta = new_region_metadata(2, 0);
        // The value of each row:
        // k1=0, ts=1, k0=2,
        let mutation = new_mutation(&["k1", "ts", "k0"], 3);
        let kvs = KeyValues::new(&meta, mutation).unwrap();
        // KeyValues
        // keys: [k0=2, k1=0]
        // ts: 1,
        check_key_values(&kvs, 3, &[Some(2), Some(0)], 1, &[]);
    }

    #[test]
    fn test_no_tag() {
        let meta = new_region_metadata(0, 2);
        // The value of each row:
        // v1=0, v0=1, ts=2,
        let mutation = new_mutation(&["v1", "v0", "ts"], 3);
        let kvs = KeyValues::new(&meta, mutation).unwrap();
        // KeyValues (note that v0 is in front of v1 in region schema)
        // ts: 2,
        // fields: [v0=1, v1=0]
        check_key_values(&kvs, 3, &[], 2, &[Some(1), Some(0)]);
    }

    #[test]
    fn test_tag_field() {
        let meta = new_region_metadata(2, 2);
        // The value of each row:
        // k0=0, v0=1, ts=2, k1=3, v1=4,
        let mutation = new_mutation(&["k0", "v0", "ts", "k1", "v1"], 3);
        let kvs = KeyValues::new(&meta, mutation).unwrap();
        // KeyValues
        // keys: [k0=0, k1=3]
        // ts: 2,
        // fields: [v0=1, v1=4]
        check_key_values(&kvs, 3, &[Some(0), Some(3)], 2, &[Some(1), Some(4)]);
    }

    #[test]
    fn test_sparse_field() {
        let meta = new_region_metadata(2, 2);
        // The value of each row:
        // k0=0, v0=1, ts=2, k1=3, (v1 will be null)
        let mutation = new_mutation(&["k0", "v0", "ts", "k1"], 3);
        let kvs = KeyValues::new(&meta, mutation).unwrap();
        // KeyValues
        // keys: [k0=0, k1=3]
        // ts: 2,
        // fields: [v0=1, v1=null]
        check_key_values(&kvs, 3, &[Some(0), Some(3)], 2, &[Some(1), None]);
    }

    #[test]
    fn test_sparse_tag_field() {
        let meta = new_region_metadata(2, 2);
        // The value of each row:
        // k0 = 0, v0=1, ts=2, (k1, v1 will be null)
        let mutation = new_mutation(&["k0", "v0", "ts"], 3);
        let kvs = KeyValues::new(&meta, mutation).unwrap();
        // KeyValues
        // keys: [k0=0, k1=null]
        // ts: 2,
        // fields: [v0=1, v1=null]
        check_key_values(&kvs, 3, &[Some(0), None], 2, &[Some(1), None]);
    }
}