mito2/
memtable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Memtables are write buffers for regions.

use std::collections::BTreeMap;
use std::fmt;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::Arc;

pub use bulk::part::BulkPart;
use common_time::Timestamp;
use serde::{Deserialize, Serialize};
use store_api::metadata::RegionMetadataRef;
use store_api::storage::{ColumnId, SequenceNumber};
use table::predicate::Predicate;

use crate::config::MitoConfig;
use crate::error::Result;
use crate::flush::WriteBufferManagerRef;
use crate::memtable::key_values::KeyValue;
pub use crate::memtable::key_values::KeyValues;
use crate::memtable::partition_tree::{PartitionTreeConfig, PartitionTreeMemtableBuilder};
use crate::memtable::time_series::TimeSeriesMemtableBuilder;
use crate::metrics::WRITE_BUFFER_BYTES;
use crate::read::prune::PruneTimeIterator;
use crate::read::scan_region::PredicateGroup;
use crate::read::Batch;
use crate::region::options::{MemtableOptions, MergeMode};
use crate::sst::file::FileTimeRange;

pub mod bulk;
pub mod key_values;
pub mod partition_tree;
mod stats;
pub mod time_partition;
pub mod time_series;
pub(crate) mod version;

/// Id for memtables.
///
/// Should be unique under the same region.
pub type MemtableId = u32;

/// Config for memtables.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
#[serde(tag = "type", rename_all = "snake_case")]
pub enum MemtableConfig {
    PartitionTree(PartitionTreeConfig),
    TimeSeries,
}

impl Default for MemtableConfig {
    fn default() -> Self {
        Self::TimeSeries
    }
}

#[derive(Debug, Default)]
pub struct MemtableStats {
    /// The estimated bytes allocated by this memtable from heap.
    estimated_bytes: usize,
    /// The inclusive time range that this memtable contains. It is None if
    /// and only if the memtable is empty.
    time_range: Option<(Timestamp, Timestamp)>,
    /// Total rows in memtable
    num_rows: usize,
    /// Total number of ranges in the memtable.
    num_ranges: usize,
    /// The maximum sequence number in the memtable.
    max_sequence: SequenceNumber,
}

impl MemtableStats {
    /// Attaches the time range to the stats.
    #[cfg(any(test, feature = "test"))]
    pub(crate) fn with_time_range(mut self, time_range: Option<(Timestamp, Timestamp)>) -> Self {
        self.time_range = time_range;
        self
    }

    /// Returns the estimated bytes allocated by this memtable.
    pub fn bytes_allocated(&self) -> usize {
        self.estimated_bytes
    }

    /// Returns the time range of the memtable.
    pub fn time_range(&self) -> Option<(Timestamp, Timestamp)> {
        self.time_range
    }

    /// Returns the num of total rows in memtable.
    pub fn num_rows(&self) -> usize {
        self.num_rows
    }

    /// Returns the number of ranges in the memtable.
    pub fn num_ranges(&self) -> usize {
        self.num_ranges
    }

    /// Returns the maximum sequence number in the memtable.
    pub fn max_sequence(&self) -> SequenceNumber {
        self.max_sequence
    }
}

pub type BoxedBatchIterator = Box<dyn Iterator<Item = Result<Batch>> + Send>;

/// Ranges in a memtable.
#[derive(Default)]
pub struct MemtableRanges {
    /// Range IDs and ranges.
    pub ranges: BTreeMap<usize, MemtableRange>,
    /// Statistics of the memtable at the query time.
    pub stats: MemtableStats,
}

/// In memory write buffer.
pub trait Memtable: Send + Sync + fmt::Debug {
    /// Returns the id of this memtable.
    fn id(&self) -> MemtableId;

    /// Writes key values into the memtable.
    fn write(&self, kvs: &KeyValues) -> Result<()>;

    /// Writes one key value pair into the memtable.
    fn write_one(&self, key_value: KeyValue) -> Result<()>;

    /// Writes an encoded batch of into memtable.
    fn write_bulk(&self, part: BulkPart) -> Result<()>;

    /// Scans the memtable.
    /// `projection` selects columns to read, `None` means reading all columns.
    /// `filters` are the predicates to be pushed down to memtable.
    fn iter(
        &self,
        projection: Option<&[ColumnId]>,
        predicate: Option<Predicate>,
        sequence: Option<SequenceNumber>,
    ) -> Result<BoxedBatchIterator>;

    /// Returns the ranges in the memtable.
    /// The returned map contains the range id and the range after applying the predicate.
    fn ranges(
        &self,
        projection: Option<&[ColumnId]>,
        predicate: PredicateGroup,
        sequence: Option<SequenceNumber>,
    ) -> MemtableRanges;

    /// Returns true if the memtable is empty.
    fn is_empty(&self) -> bool;

    /// Turns a mutable memtable into an immutable memtable.
    fn freeze(&self) -> Result<()>;

    /// Returns the [MemtableStats] info of Memtable.
    fn stats(&self) -> MemtableStats;

    /// Forks this (immutable) memtable and returns a new mutable memtable with specific memtable `id`.
    ///
    /// A region must freeze the memtable before invoking this method.
    fn fork(&self, id: MemtableId, metadata: &RegionMetadataRef) -> MemtableRef;
}

pub type MemtableRef = Arc<dyn Memtable>;

/// Builder to build a new [Memtable].
pub trait MemtableBuilder: Send + Sync + fmt::Debug {
    /// Builds a new memtable instance.
    fn build(&self, id: MemtableId, metadata: &RegionMetadataRef) -> MemtableRef;
}

pub type MemtableBuilderRef = Arc<dyn MemtableBuilder>;

/// Memtable memory allocation tracker.
#[derive(Default)]
pub struct AllocTracker {
    write_buffer_manager: Option<WriteBufferManagerRef>,
    /// Bytes allocated by the tracker.
    bytes_allocated: AtomicUsize,
    /// Whether allocating is done.
    is_done_allocating: AtomicBool,
}

impl fmt::Debug for AllocTracker {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("AllocTracker")
            .field("bytes_allocated", &self.bytes_allocated)
            .field("is_done_allocating", &self.is_done_allocating)
            .finish()
    }
}

impl AllocTracker {
    /// Returns a new [AllocTracker].
    pub fn new(write_buffer_manager: Option<WriteBufferManagerRef>) -> AllocTracker {
        AllocTracker {
            write_buffer_manager,
            bytes_allocated: AtomicUsize::new(0),
            is_done_allocating: AtomicBool::new(false),
        }
    }

    /// Tracks `bytes` memory is allocated.
    pub(crate) fn on_allocation(&self, bytes: usize) {
        self.bytes_allocated.fetch_add(bytes, Ordering::Relaxed);
        WRITE_BUFFER_BYTES.add(bytes as i64);
        if let Some(write_buffer_manager) = &self.write_buffer_manager {
            write_buffer_manager.reserve_mem(bytes);
        }
    }

    /// Marks we have finished allocating memory so we can free it from
    /// the write buffer's limit.
    ///
    /// The region MUST ensure that it calls this method inside the region writer's write lock.
    pub(crate) fn done_allocating(&self) {
        if let Some(write_buffer_manager) = &self.write_buffer_manager {
            if self
                .is_done_allocating
                .compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
                .is_ok()
            {
                write_buffer_manager
                    .schedule_free_mem(self.bytes_allocated.load(Ordering::Relaxed));
            }
        }
    }

    /// Returns bytes allocated.
    pub(crate) fn bytes_allocated(&self) -> usize {
        self.bytes_allocated.load(Ordering::Relaxed)
    }

    /// Returns the write buffer manager.
    pub(crate) fn write_buffer_manager(&self) -> Option<WriteBufferManagerRef> {
        self.write_buffer_manager.clone()
    }
}

impl Drop for AllocTracker {
    fn drop(&mut self) {
        if !self.is_done_allocating.load(Ordering::Relaxed) {
            self.done_allocating();
        }

        let bytes_allocated = self.bytes_allocated.load(Ordering::Relaxed);
        WRITE_BUFFER_BYTES.sub(bytes_allocated as i64);

        // Memory tracked by this tracker is freed.
        if let Some(write_buffer_manager) = &self.write_buffer_manager {
            write_buffer_manager.free_mem(bytes_allocated);
        }
    }
}

/// Provider of memtable builders for regions.
#[derive(Clone)]
pub(crate) struct MemtableBuilderProvider {
    write_buffer_manager: Option<WriteBufferManagerRef>,
    config: Arc<MitoConfig>,
}

impl MemtableBuilderProvider {
    pub(crate) fn new(
        write_buffer_manager: Option<WriteBufferManagerRef>,
        config: Arc<MitoConfig>,
    ) -> Self {
        Self {
            write_buffer_manager,
            config,
        }
    }

    pub(crate) fn builder_for_options(
        &self,
        options: Option<&MemtableOptions>,
        dedup: bool,
        merge_mode: MergeMode,
    ) -> MemtableBuilderRef {
        match options {
            Some(MemtableOptions::TimeSeries) => Arc::new(TimeSeriesMemtableBuilder::new(
                self.write_buffer_manager.clone(),
                dedup,
                merge_mode,
            )),
            Some(MemtableOptions::PartitionTree(opts)) => {
                Arc::new(PartitionTreeMemtableBuilder::new(
                    PartitionTreeConfig {
                        index_max_keys_per_shard: opts.index_max_keys_per_shard,
                        data_freeze_threshold: opts.data_freeze_threshold,
                        fork_dictionary_bytes: opts.fork_dictionary_bytes,
                        dedup,
                        merge_mode,
                    },
                    self.write_buffer_manager.clone(),
                ))
            }
            None => self.default_memtable_builder(dedup, merge_mode),
        }
    }

    fn default_memtable_builder(&self, dedup: bool, merge_mode: MergeMode) -> MemtableBuilderRef {
        match &self.config.memtable {
            MemtableConfig::PartitionTree(config) => {
                let mut config = config.clone();
                config.dedup = dedup;
                Arc::new(PartitionTreeMemtableBuilder::new(
                    config,
                    self.write_buffer_manager.clone(),
                ))
            }
            MemtableConfig::TimeSeries => Arc::new(TimeSeriesMemtableBuilder::new(
                self.write_buffer_manager.clone(),
                dedup,
                merge_mode,
            )),
        }
    }
}

/// Builder to build an iterator to read the range.
/// The builder should know the projection and the predicate to build the iterator.
pub trait IterBuilder: Send + Sync {
    /// Returns the iterator to read the range.
    fn build(&self) -> Result<BoxedBatchIterator>;
}

pub type BoxedIterBuilder = Box<dyn IterBuilder>;

/// Context shared by ranges of the same memtable.
pub struct MemtableRangeContext {
    /// Id of the memtable.
    id: MemtableId,
    /// Iterator builder.
    builder: BoxedIterBuilder,
    /// All filters.
    predicate: PredicateGroup,
}

pub type MemtableRangeContextRef = Arc<MemtableRangeContext>;

impl MemtableRangeContext {
    /// Creates a new [MemtableRangeContext].
    pub fn new(id: MemtableId, builder: BoxedIterBuilder, predicate: PredicateGroup) -> Self {
        Self {
            id,
            builder,
            predicate,
        }
    }
}

/// A range in the memtable.
#[derive(Clone)]
pub struct MemtableRange {
    /// Shared context.
    context: MemtableRangeContextRef,
}

impl MemtableRange {
    /// Creates a new range from context.
    pub fn new(context: MemtableRangeContextRef) -> Self {
        Self { context }
    }

    /// Returns the id of the memtable to read.
    pub fn id(&self) -> MemtableId {
        self.context.id
    }

    /// Builds an iterator to read the range.
    /// Filters the result by the specific time range, this ensures memtable won't return
    /// rows out of the time range when new rows are inserted.
    pub fn build_iter(&self, time_range: FileTimeRange) -> Result<BoxedBatchIterator> {
        let iter = self.context.builder.build()?;
        let time_filters = self.context.predicate.time_filters();
        Ok(Box::new(PruneTimeIterator::new(
            iter,
            time_range,
            time_filters,
        )))
    }
}

#[cfg(test)]
mod tests {
    use common_base::readable_size::ReadableSize;

    use super::*;
    use crate::flush::{WriteBufferManager, WriteBufferManagerImpl};

    #[test]
    fn test_deserialize_memtable_config() {
        let s = r#"
type = "partition_tree"
index_max_keys_per_shard = 8192
data_freeze_threshold = 1024
dedup = true
fork_dictionary_bytes = "512MiB"
"#;
        let config: MemtableConfig = toml::from_str(s).unwrap();
        let MemtableConfig::PartitionTree(memtable_config) = config else {
            unreachable!()
        };
        assert!(memtable_config.dedup);
        assert_eq!(8192, memtable_config.index_max_keys_per_shard);
        assert_eq!(1024, memtable_config.data_freeze_threshold);
        assert_eq!(ReadableSize::mb(512), memtable_config.fork_dictionary_bytes);
    }

    #[test]
    fn test_alloc_tracker_without_manager() {
        let tracker = AllocTracker::new(None);
        assert_eq!(0, tracker.bytes_allocated());
        tracker.on_allocation(100);
        assert_eq!(100, tracker.bytes_allocated());
        tracker.on_allocation(200);
        assert_eq!(300, tracker.bytes_allocated());

        tracker.done_allocating();
        assert_eq!(300, tracker.bytes_allocated());
    }

    #[test]
    fn test_alloc_tracker_with_manager() {
        let manager = Arc::new(WriteBufferManagerImpl::new(1000));
        {
            let tracker = AllocTracker::new(Some(manager.clone() as WriteBufferManagerRef));

            tracker.on_allocation(100);
            assert_eq!(100, tracker.bytes_allocated());
            assert_eq!(100, manager.memory_usage());
            assert_eq!(100, manager.mutable_usage());

            for _ in 0..2 {
                // Done allocating won't free the same memory multiple times.
                tracker.done_allocating();
                assert_eq!(100, manager.memory_usage());
                assert_eq!(0, manager.mutable_usage());
            }
        }

        assert_eq!(0, manager.memory_usage());
        assert_eq!(0, manager.mutable_usage());
    }

    #[test]
    fn test_alloc_tracker_without_done_allocating() {
        let manager = Arc::new(WriteBufferManagerImpl::new(1000));
        {
            let tracker = AllocTracker::new(Some(manager.clone() as WriteBufferManagerRef));

            tracker.on_allocation(100);
            assert_eq!(100, tracker.bytes_allocated());
            assert_eq!(100, manager.memory_usage());
            assert_eq!(100, manager.mutable_usage());
        }

        assert_eq!(0, manager.memory_usage());
        assert_eq!(0, manager.mutable_usage());
    }
}