metric_engine/
row_modifier.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::{BTreeMap, HashMap};
use std::hash::Hash;

use api::v1::value::ValueData;
use api::v1::{ColumnDataType, ColumnSchema, Row, Rows, SemanticType, Value};
use datatypes::value::ValueRef;
use mito2::row_converter::SparsePrimaryKeyCodec;
use smallvec::SmallVec;
use snafu::ResultExt;
use store_api::codec::PrimaryKeyEncoding;
use store_api::metric_engine_consts::{
    DATA_SCHEMA_TABLE_ID_COLUMN_NAME, DATA_SCHEMA_TSID_COLUMN_NAME,
};
use store_api::storage::consts::{ReservedColumnId, PRIMARY_KEY_COLUMN_NAME};
use store_api::storage::{ColumnId, TableId};

use crate::error::{EncodePrimaryKeySnafu, Result};

// A random number
const TSID_HASH_SEED: u32 = 846793005;

/// A row modifier modifies [`Rows`].
///
/// - For [`PrimaryKeyEncoding::Sparse`] encoding,
///   it replaces the primary key columns with the encoded primary key column(`__primary_key`).
///
/// - For [`PrimaryKeyEncoding::Dense`] encoding,
///   it adds two columns(`__table_id`, `__tsid`) to the row.
pub(crate) struct RowModifier {
    codec: SparsePrimaryKeyCodec,
}

impl RowModifier {
    pub fn new() -> Self {
        Self {
            codec: SparsePrimaryKeyCodec::schemaless(),
        }
    }

    /// Modify rows with the given primary key encoding.
    pub(crate) fn modify_rows(
        &self,
        iter: RowsIter,
        table_id: TableId,
        encoding: PrimaryKeyEncoding,
    ) -> Result<Rows> {
        match encoding {
            PrimaryKeyEncoding::Sparse => self.modify_rows_sparse(iter, table_id),
            PrimaryKeyEncoding::Dense => self.modify_rows_dense(iter, table_id),
        }
    }

    /// Modifies rows with sparse primary key encoding.
    /// It replaces the primary key columns with the encoded primary key column(`__primary_key`).
    fn modify_rows_sparse(&self, mut iter: RowsIter, table_id: TableId) -> Result<Rows> {
        let num_column = iter.rows.schema.len();
        let num_primary_key_column = iter.index.num_primary_key_column;
        // num_output_column = remaining columns(fields columns + timestamp column) + 1 (encoded primary key column)
        let num_output_column = num_column - num_primary_key_column + 1;

        let mut buffer = vec![];
        for mut iter in iter.iter_mut() {
            let (table_id, tsid) = self.fill_internal_columns(table_id, &iter);
            let mut values = Vec::with_capacity(num_output_column);
            buffer.clear();
            let internal_columns = [
                (
                    ReservedColumnId::table_id(),
                    api::helper::pb_value_to_value_ref(&table_id, &None),
                ),
                (
                    ReservedColumnId::tsid(),
                    api::helper::pb_value_to_value_ref(&tsid, &None),
                ),
            ];
            self.codec
                .encode_to_vec(internal_columns.into_iter(), &mut buffer)
                .context(EncodePrimaryKeySnafu)?;
            self.codec
                .encode_to_vec(iter.primary_keys(), &mut buffer)
                .context(EncodePrimaryKeySnafu)?;

            values.push(ValueData::BinaryValue(buffer.clone()).into());
            values.extend(iter.remaining());
            // Replace the row with the encoded row
            *iter.row = Row { values };
        }

        // Update the schema
        let mut schema = Vec::with_capacity(num_output_column);
        schema.push(ColumnSchema {
            column_name: PRIMARY_KEY_COLUMN_NAME.to_string(),
            datatype: ColumnDataType::Binary as i32,
            semantic_type: SemanticType::Tag as _,
            datatype_extension: None,
            options: None,
        });
        schema.extend(iter.remaining_columns());
        iter.rows.schema = schema;

        Ok(iter.rows)
    }

    /// Modifies rows with dense primary key encoding.
    /// It adds two columns(`__table_id`, `__tsid`) to the row.
    fn modify_rows_dense(&self, mut iter: RowsIter, table_id: TableId) -> Result<Rows> {
        // add table_name column
        iter.rows.schema.push(ColumnSchema {
            column_name: DATA_SCHEMA_TABLE_ID_COLUMN_NAME.to_string(),
            datatype: ColumnDataType::Uint32 as i32,
            semantic_type: SemanticType::Tag as _,
            datatype_extension: None,
            options: None,
        });
        // add tsid column
        iter.rows.schema.push(ColumnSchema {
            column_name: DATA_SCHEMA_TSID_COLUMN_NAME.to_string(),
            datatype: ColumnDataType::Uint64 as i32,
            semantic_type: SemanticType::Tag as _,
            datatype_extension: None,
            options: None,
        });
        for iter in iter.iter_mut() {
            let (table_id, tsid) = self.fill_internal_columns(table_id, &iter);
            iter.row.values.push(table_id);
            iter.row.values.push(tsid);
        }

        Ok(iter.rows)
    }

    /// Fills internal columns of a row with table name and a hash of tag values.
    fn fill_internal_columns(&self, table_id: TableId, iter: &RowIter<'_>) -> (Value, Value) {
        let mut hasher = TsidGenerator::default();
        for (name, value) in iter.primary_keys_with_name() {
            // The type is checked before. So only null is ignored.
            if let Some(ValueData::StringValue(string)) = &value.value_data {
                hasher.write_label(name, string);
            }
        }
        let hash = hasher.finish();

        (
            ValueData::U32Value(table_id).into(),
            ValueData::U64Value(hash).into(),
        )
    }
}

/// Tsid generator.
pub struct TsidGenerator {
    hasher: mur3::Hasher128,
}

impl Default for TsidGenerator {
    fn default() -> Self {
        Self {
            hasher: mur3::Hasher128::with_seed(TSID_HASH_SEED),
        }
    }
}

impl TsidGenerator {
    /// Writes a label pair to the generator.
    pub fn write_label(&mut self, name: &str, value: &str) {
        name.hash(&mut self.hasher);
        value.hash(&mut self.hasher);
    }

    /// Generates a new TSID.
    pub fn finish(&mut self) -> u64 {
        // TSID is 64 bits, simply truncate the 128 bits hash
        let (hash, _) = self.hasher.finish128();
        hash
    }
}

/// Index of a value.
#[derive(Debug, Clone, Copy)]
struct ValueIndex {
    column_id: ColumnId,
    index: usize,
}

/// Index of a row.
struct IterIndex {
    indices: Vec<ValueIndex>,
    num_primary_key_column: usize,
}

impl IterIndex {
    fn new(row_schema: &[ColumnSchema], name_to_column_id: &HashMap<String, ColumnId>) -> Self {
        let mut reserved_indices = SmallVec::<[ValueIndex; 2]>::new();
        // Uses BTreeMap to keep the primary key column name order (lexicographical)
        let mut primary_key_indices = BTreeMap::new();
        let mut field_indices = SmallVec::<[ValueIndex; 1]>::new();
        let mut ts_index = None;
        for (idx, col) in row_schema.iter().enumerate() {
            match col.semantic_type() {
                SemanticType::Tag => match col.column_name.as_str() {
                    DATA_SCHEMA_TABLE_ID_COLUMN_NAME => {
                        reserved_indices.push(ValueIndex {
                            column_id: ReservedColumnId::table_id(),
                            index: idx,
                        });
                    }
                    DATA_SCHEMA_TSID_COLUMN_NAME => {
                        reserved_indices.push(ValueIndex {
                            column_id: ReservedColumnId::tsid(),
                            index: idx,
                        });
                    }
                    _ => {
                        // Inserts primary key column name follower the column name order (lexicographical)
                        primary_key_indices.insert(
                            col.column_name.as_str(),
                            ValueIndex {
                                column_id: *name_to_column_id.get(&col.column_name).unwrap(),
                                index: idx,
                            },
                        );
                    }
                },
                SemanticType::Field => {
                    field_indices.push(ValueIndex {
                        column_id: *name_to_column_id.get(&col.column_name).unwrap(),
                        index: idx,
                    });
                }
                SemanticType::Timestamp => {
                    ts_index = Some(ValueIndex {
                        column_id: *name_to_column_id.get(&col.column_name).unwrap(),
                        index: idx,
                    });
                }
            }
        }
        let num_primary_key_column = primary_key_indices.len() + reserved_indices.len();
        let indices = reserved_indices
            .into_iter()
            .chain(primary_key_indices.values().cloned())
            .chain(ts_index)
            .chain(field_indices)
            .collect();
        IterIndex {
            indices,
            num_primary_key_column,
        }
    }
}

/// Iterator of rows.
pub(crate) struct RowsIter {
    rows: Rows,
    index: IterIndex,
}

impl RowsIter {
    pub fn new(rows: Rows, name_to_column_id: &HashMap<String, ColumnId>) -> Self {
        let index: IterIndex = IterIndex::new(&rows.schema, name_to_column_id);
        Self { rows, index }
    }

    /// Returns the iterator of rows.
    fn iter_mut(&mut self) -> impl Iterator<Item = RowIter> {
        self.rows.rows.iter_mut().map(|row| RowIter {
            row,
            index: &self.index,
            schema: &self.rows.schema,
        })
    }

    /// Returns the remaining columns.
    fn remaining_columns(&mut self) -> impl Iterator<Item = ColumnSchema> + '_ {
        self.index.indices[self.index.num_primary_key_column..]
            .iter()
            .map(|idx| std::mem::take(&mut self.rows.schema[idx.index]))
    }
}

/// Iterator of a row.
struct RowIter<'a> {
    row: &'a mut Row,
    index: &'a IterIndex,
    schema: &'a Vec<ColumnSchema>,
}

impl RowIter<'_> {
    /// Returns the primary keys with their names.
    fn primary_keys_with_name(&self) -> impl Iterator<Item = (&String, &Value)> {
        self.index.indices[..self.index.num_primary_key_column]
            .iter()
            .map(|idx| {
                (
                    &self.schema[idx.index].column_name,
                    &self.row.values[idx.index],
                )
            })
    }

    /// Returns the primary keys.
    fn primary_keys(&self) -> impl Iterator<Item = (ColumnId, ValueRef)> {
        self.index.indices[..self.index.num_primary_key_column]
            .iter()
            .map(|idx| {
                (
                    idx.column_id,
                    api::helper::pb_value_to_value_ref(
                        &self.row.values[idx.index],
                        &self.schema[idx.index].datatype_extension,
                    ),
                )
            })
    }

    /// Returns the remaining columns.
    fn remaining(&mut self) -> impl Iterator<Item = Value> + '_ {
        self.index.indices[self.index.num_primary_key_column..]
            .iter()
            .map(|idx| std::mem::take(&mut self.row.values[idx.index]))
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashMap;

    use api::v1::{Row, Rows};

    use super::*;

    fn test_schema() -> Vec<ColumnSchema> {
        vec![
            ColumnSchema {
                column_name: "namespace".to_string(),
                datatype: ColumnDataType::String as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
            ColumnSchema {
                column_name: "host".to_string(),
                datatype: ColumnDataType::String as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
        ]
    }

    fn test_row(v1: &str, v2: &str) -> Row {
        Row {
            values: vec![
                ValueData::StringValue(v1.to_string()).into(),
                ValueData::StringValue(v2.to_string()).into(),
            ],
        }
    }

    fn test_name_to_column_id() -> HashMap<String, ColumnId> {
        HashMap::from([("namespace".to_string(), 1), ("host".to_string(), 2)])
    }

    #[test]
    fn test_encode_sparse() {
        let name_to_column_id = test_name_to_column_id();
        let encoder = RowModifier::new();
        let table_id = 1025;
        let schema = test_schema();
        let row = test_row("greptimedb", "127.0.0.1");
        let rows = Rows {
            schema,
            rows: vec![row],
        };
        let rows_iter = RowsIter::new(rows, &name_to_column_id);
        let result = encoder.modify_rows_sparse(rows_iter, table_id).unwrap();
        assert_eq!(result.rows[0].values.len(), 1);
        let encoded_primary_key = vec![
            128, 0, 0, 4, 1, 0, 0, 4, 1, 128, 0, 0, 3, 1, 131, 9, 166, 190, 173, 37, 39, 240, 0, 0,
            0, 2, 1, 1, 49, 50, 55, 46, 48, 46, 48, 46, 9, 49, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
            1, 1, 103, 114, 101, 112, 116, 105, 109, 101, 9, 100, 98, 0, 0, 0, 0, 0, 0, 2,
        ];
        assert_eq!(
            result.rows[0].values[0],
            ValueData::BinaryValue(encoded_primary_key).into()
        );
        assert_eq!(result.schema, expected_sparse_schema());
    }

    fn expected_sparse_schema() -> Vec<ColumnSchema> {
        vec![ColumnSchema {
            column_name: PRIMARY_KEY_COLUMN_NAME.to_string(),
            datatype: ColumnDataType::Binary as i32,
            semantic_type: SemanticType::Tag as _,
            datatype_extension: None,
            options: None,
        }]
    }

    fn expected_dense_schema() -> Vec<ColumnSchema> {
        vec![
            ColumnSchema {
                column_name: "namespace".to_string(),
                datatype: ColumnDataType::String as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
            ColumnSchema {
                column_name: "host".to_string(),
                datatype: ColumnDataType::String as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
            ColumnSchema {
                column_name: DATA_SCHEMA_TABLE_ID_COLUMN_NAME.to_string(),
                datatype: ColumnDataType::Uint32 as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
            ColumnSchema {
                column_name: DATA_SCHEMA_TSID_COLUMN_NAME.to_string(),
                datatype: ColumnDataType::Uint64 as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
        ]
    }

    #[test]
    fn test_encode_dense() {
        let name_to_column_id = test_name_to_column_id();
        let encoder = RowModifier::new();
        let table_id = 1025;
        let schema = test_schema();
        let row = test_row("greptimedb", "127.0.0.1");
        let rows = Rows {
            schema,
            rows: vec![row],
        };
        let rows_iter = RowsIter::new(rows, &name_to_column_id);
        let result = encoder.modify_rows_dense(rows_iter, table_id).unwrap();
        assert_eq!(
            result.rows[0].values[0],
            ValueData::StringValue("greptimedb".to_string()).into()
        );
        assert_eq!(
            result.rows[0].values[1],
            ValueData::StringValue("127.0.0.1".to_string()).into()
        );
        assert_eq!(result.rows[0].values[2], ValueData::U32Value(1025).into());
        assert_eq!(
            result.rows[0].values[3],
            ValueData::U64Value(9442261431637846000).into()
        );
        assert_eq!(result.schema, expected_dense_schema());
    }

    #[test]
    fn test_fill_internal_columns() {
        let name_to_column_id = test_name_to_column_id();
        let encoder = RowModifier::new();
        let table_id = 1025;
        let schema = test_schema();
        let row = test_row("greptimedb", "127.0.0.1");
        let rows = Rows {
            schema,
            rows: vec![row],
        };
        let mut rows_iter = RowsIter::new(rows, &name_to_column_id);
        let row_iter = rows_iter.iter_mut().next().unwrap();
        let (encoded_table_id, tsid) = encoder.fill_internal_columns(table_id, &row_iter);
        assert_eq!(encoded_table_id, ValueData::U32Value(1025).into());
        assert_eq!(tsid, ValueData::U64Value(9442261431637846000).into());

        // Change the column order
        let schema = vec![
            ColumnSchema {
                column_name: "host".to_string(),
                datatype: ColumnDataType::String as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
            ColumnSchema {
                column_name: "namespace".to_string(),
                datatype: ColumnDataType::String as i32,
                semantic_type: SemanticType::Tag as _,
                datatype_extension: None,
                options: None,
            },
        ];
        let row = test_row("127.0.0.1", "greptimedb");
        let rows = Rows {
            schema,
            rows: vec![row],
        };
        let mut rows_iter = RowsIter::new(rows, &name_to_column_id);
        let row_iter = rows_iter.iter_mut().next().unwrap();
        let (encoded_table_id, tsid) = encoder.fill_internal_columns(table_id, &row_iter);
        assert_eq!(encoded_table_id, ValueData::U32Value(1025).into());
        assert_eq!(tsid, ValueData::U64Value(9442261431637846000).into());
    }
}