meta_srv/region/
supervisor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::fmt::Debug;
use std::sync::{Arc, Mutex};
use std::time::Duration;

use async_trait::async_trait;
use common_meta::datanode::Stat;
use common_meta::ddl::{DetectingRegion, RegionFailureDetectorController};
use common_meta::key::maintenance::MaintenanceModeManagerRef;
use common_meta::leadership_notifier::LeadershipChangeListener;
use common_meta::peer::PeerLookupServiceRef;
use common_meta::DatanodeId;
use common_runtime::JoinHandle;
use common_telemetry::{error, info, warn};
use common_time::util::current_time_millis;
use error::Error::{MigrationRunning, TableRouteNotFound};
use snafu::{OptionExt, ResultExt};
use store_api::storage::RegionId;
use tokio::sync::mpsc::{Receiver, Sender};
use tokio::time::{interval, MissedTickBehavior};

use crate::error::{self, Result};
use crate::failure_detector::PhiAccrualFailureDetectorOptions;
use crate::metasrv::{SelectorContext, SelectorRef};
use crate::procedure::region_migration::manager::RegionMigrationManagerRef;
use crate::procedure::region_migration::RegionMigrationProcedureTask;
use crate::region::failure_detector::RegionFailureDetector;
use crate::selector::SelectorOptions;

/// `DatanodeHeartbeat` represents the heartbeat signal sent from a datanode.
/// It includes identifiers for the cluster and datanode, a list of regions being monitored,
/// and a timestamp indicating when the heartbeat was sent.
#[derive(Debug)]
pub(crate) struct DatanodeHeartbeat {
    datanode_id: DatanodeId,
    // TODO(weny): Considers collecting the memtable size in regions.
    regions: Vec<RegionId>,
    timestamp: i64,
}

impl From<&Stat> for DatanodeHeartbeat {
    fn from(value: &Stat) -> Self {
        DatanodeHeartbeat {
            datanode_id: value.id,
            regions: value.region_stats.iter().map(|x| x.id).collect(),
            timestamp: value.timestamp_millis,
        }
    }
}

/// `Event` represents various types of events that can be processed by the region supervisor.
/// These events are crucial for managing state transitions and handling specific scenarios
/// in the region lifecycle.
///
/// Variants:
/// - `Tick`: This event is used to trigger region failure detection periodically.
/// - `HeartbeatArrived`: This event presents the metasrv received [`DatanodeHeartbeat`] from the datanodes.
/// - `Clear`: This event is used to reset the state of the supervisor, typically used
///   when a system-wide reset or reinitialization is needed.
/// - `Dump`: (Available only in test) This event triggers a dump of the
///   current state for debugging purposes. It allows developers to inspect the internal state
///   of the supervisor during tests.
pub(crate) enum Event {
    Tick,
    RegisterFailureDetectors(Vec<DetectingRegion>),
    DeregisterFailureDetectors(Vec<DetectingRegion>),
    HeartbeatArrived(DatanodeHeartbeat),
    Clear,
    #[cfg(test)]
    Dump(tokio::sync::oneshot::Sender<RegionFailureDetector>),
}

#[cfg(test)]
impl Event {
    pub(crate) fn into_region_failure_detectors(self) -> Vec<DetectingRegion> {
        match self {
            Self::RegisterFailureDetectors(detecting_regions) => detecting_regions,
            _ => unreachable!(),
        }
    }
}

impl Debug for Event {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Tick => write!(f, "Tick"),
            Self::HeartbeatArrived(arg0) => f.debug_tuple("HeartbeatArrived").field(arg0).finish(),
            Self::Clear => write!(f, "Clear"),
            Self::RegisterFailureDetectors(arg0) => f
                .debug_tuple("RegisterFailureDetectors")
                .field(arg0)
                .finish(),
            Self::DeregisterFailureDetectors(arg0) => f
                .debug_tuple("DeregisterFailureDetectors")
                .field(arg0)
                .finish(),
            #[cfg(test)]
            Self::Dump(_) => f.debug_struct("Dump").finish(),
        }
    }
}

pub type RegionSupervisorTickerRef = Arc<RegionSupervisorTicker>;

/// A background job to generate [`Event::Tick`] type events.
#[derive(Debug)]
pub struct RegionSupervisorTicker {
    /// The [`Option`] wrapper allows us to abort the job while dropping the [`RegionSupervisor`].
    tick_handle: Mutex<Option<JoinHandle<()>>>,

    /// The interval of tick.
    tick_interval: Duration,

    /// Sends [Event]s.
    sender: Sender<Event>,
}

#[async_trait]
impl LeadershipChangeListener for RegionSupervisorTicker {
    fn name(&self) -> &'static str {
        "RegionSupervisorTicker"
    }

    async fn on_leader_start(&self) -> common_meta::error::Result<()> {
        self.start();
        Ok(())
    }

    async fn on_leader_stop(&self) -> common_meta::error::Result<()> {
        self.stop();
        Ok(())
    }
}

impl RegionSupervisorTicker {
    pub(crate) fn new(tick_interval: Duration, sender: Sender<Event>) -> Self {
        Self {
            tick_handle: Mutex::new(None),
            tick_interval,
            sender,
        }
    }

    /// Starts the ticker.
    pub fn start(&self) {
        let mut handle = self.tick_handle.lock().unwrap();
        if handle.is_none() {
            let sender = self.sender.clone();
            let tick_interval = self.tick_interval;
            let ticker_loop = tokio::spawn(async move {
                let mut interval = interval(tick_interval);
                interval.set_missed_tick_behavior(MissedTickBehavior::Skip);
                if let Err(err) = sender.send(Event::Clear).await {
                    warn!(err; "EventReceiver is dropped, failed to send Event::Clear");
                    return;
                }
                loop {
                    interval.tick().await;
                    if sender.send(Event::Tick).await.is_err() {
                        info!("EventReceiver is dropped, tick loop is stopped");
                        break;
                    }
                }
            });
            *handle = Some(ticker_loop);
        }
    }

    /// Stops the ticker.
    pub fn stop(&self) {
        let handle = self.tick_handle.lock().unwrap().take();
        if let Some(handle) = handle {
            handle.abort();
            info!("The tick loop is stopped.");
        }
    }
}

impl Drop for RegionSupervisorTicker {
    fn drop(&mut self) {
        self.stop();
    }
}

pub type RegionSupervisorRef = Arc<RegionSupervisor>;

/// The default tick interval.
pub const DEFAULT_TICK_INTERVAL: Duration = Duration::from_secs(1);

/// The [`RegionSupervisor`] is used to detect Region failures
/// and initiate Region failover upon detection, ensuring uninterrupted region service.
pub struct RegionSupervisor {
    /// Used to detect the failure of regions.
    failure_detector: RegionFailureDetector,
    /// Receives [Event]s.
    receiver: Receiver<Event>,
    /// The context of [`SelectorRef`]
    selector_context: SelectorContext,
    /// Candidate node selector.
    selector: SelectorRef,
    /// Region migration manager.
    region_migration_manager: RegionMigrationManagerRef,
    /// The maintenance mode manager.
    maintenance_mode_manager: MaintenanceModeManagerRef,
    /// Peer lookup service
    peer_lookup: PeerLookupServiceRef,
}

/// Controller for managing failure detectors for regions.
#[derive(Debug, Clone)]
pub struct RegionFailureDetectorControl {
    sender: Sender<Event>,
}

impl RegionFailureDetectorControl {
    pub(crate) fn new(sender: Sender<Event>) -> Self {
        Self { sender }
    }
}

#[async_trait::async_trait]
impl RegionFailureDetectorController for RegionFailureDetectorControl {
    async fn register_failure_detectors(&self, detecting_regions: Vec<DetectingRegion>) {
        if let Err(err) = self
            .sender
            .send(Event::RegisterFailureDetectors(detecting_regions))
            .await
        {
            error!(err; "RegionSupervisor has stop receiving heartbeat.");
        }
    }

    async fn deregister_failure_detectors(&self, detecting_regions: Vec<DetectingRegion>) {
        if let Err(err) = self
            .sender
            .send(Event::DeregisterFailureDetectors(detecting_regions))
            .await
        {
            error!(err; "RegionSupervisor has stop receiving heartbeat.");
        }
    }
}

/// [`HeartbeatAcceptor`] forwards heartbeats to [`RegionSupervisor`].
#[derive(Clone)]
pub(crate) struct HeartbeatAcceptor {
    sender: Sender<Event>,
}

impl HeartbeatAcceptor {
    pub(crate) fn new(sender: Sender<Event>) -> Self {
        Self { sender }
    }

    /// Accepts heartbeats from datanodes.
    pub(crate) async fn accept(&self, heartbeat: DatanodeHeartbeat) {
        if let Err(err) = self.sender.send(Event::HeartbeatArrived(heartbeat)).await {
            error!(err; "RegionSupervisor has stop receiving heartbeat.");
        }
    }
}

impl RegionSupervisor {
    /// Returns a mpsc channel with a buffer capacity of 1024 for sending and receiving `Event` messages.
    pub(crate) fn channel() -> (Sender<Event>, Receiver<Event>) {
        tokio::sync::mpsc::channel(1024)
    }

    pub(crate) fn new(
        event_receiver: Receiver<Event>,
        options: PhiAccrualFailureDetectorOptions,
        selector_context: SelectorContext,
        selector: SelectorRef,
        region_migration_manager: RegionMigrationManagerRef,
        maintenance_mode_manager: MaintenanceModeManagerRef,
        peer_lookup: PeerLookupServiceRef,
    ) -> Self {
        Self {
            failure_detector: RegionFailureDetector::new(options),
            receiver: event_receiver,
            selector_context,
            selector,
            region_migration_manager,
            maintenance_mode_manager,
            peer_lookup,
        }
    }

    /// Runs the main loop.
    pub(crate) async fn run(&mut self) {
        while let Some(event) = self.receiver.recv().await {
            match event {
                Event::Tick => {
                    let regions = self.detect_region_failure();
                    self.handle_region_failures(regions).await;
                }
                Event::RegisterFailureDetectors(detecting_regions) => {
                    self.register_failure_detectors(detecting_regions).await
                }
                Event::DeregisterFailureDetectors(detecting_regions) => {
                    self.deregister_failure_detectors(detecting_regions).await
                }
                Event::HeartbeatArrived(heartbeat) => self.on_heartbeat_arrived(heartbeat),
                Event::Clear => self.clear(),
                #[cfg(test)]
                Event::Dump(sender) => {
                    let _ = sender.send(self.failure_detector.dump());
                }
            }
        }
        info!("RegionSupervisor is stopped!");
    }

    async fn register_failure_detectors(&self, detecting_regions: Vec<DetectingRegion>) {
        let ts_millis = current_time_millis();
        for region in detecting_regions {
            // The corresponding region has `acceptable_heartbeat_pause_millis` to send heartbeat from datanode.
            self.failure_detector
                .maybe_init_region_failure_detector(region, ts_millis);
        }
    }

    async fn deregister_failure_detectors(&self, detecting_regions: Vec<DetectingRegion>) {
        for region in detecting_regions {
            self.failure_detector.remove(&region)
        }
    }

    async fn handle_region_failures(&self, mut regions: Vec<(DatanodeId, RegionId)>) {
        if regions.is_empty() {
            return;
        }
        match self.is_maintenance_mode_enabled().await {
            Ok(false) => {}
            Ok(true) => {
                info!("Maintenance mode is enabled, skip failover");
                return;
            }
            Err(err) => {
                error!(err; "Failed to check maintenance mode");
                return;
            }
        }

        let migrating_regions = regions
            .extract_if(.., |(_, region_id)| {
                self.region_migration_manager.tracker().contains(*region_id)
            })
            .collect::<Vec<_>>();

        for (datanode_id, region_id) in migrating_regions {
            self.failure_detector.remove(&(datanode_id, region_id));
        }

        warn!("Detects region failures: {:?}", regions);
        for (datanode_id, region_id) in regions {
            match self.do_failover(datanode_id, region_id).await {
                Ok(_) => self.failure_detector.remove(&(datanode_id, region_id)),
                Err(err) => {
                    error!(err; "Failed to execute region failover for region: {region_id}, datanode: {datanode_id}");
                }
            }
        }
    }

    pub(crate) async fn is_maintenance_mode_enabled(&self) -> Result<bool> {
        self.maintenance_mode_manager
            .maintenance_mode()
            .await
            .context(error::MaintenanceModeManagerSnafu)
    }

    async fn do_failover(&self, datanode_id: DatanodeId, region_id: RegionId) -> Result<()> {
        let from_peer = self
            .peer_lookup
            .datanode(datanode_id)
            .await
            .context(error::LookupPeerSnafu {
                peer_id: datanode_id,
            })?
            .context(error::PeerUnavailableSnafu {
                peer_id: datanode_id,
            })?;
        let mut peers = self
            .selector
            .select(
                &self.selector_context,
                SelectorOptions {
                    min_required_items: 1,
                    allow_duplication: false,
                },
            )
            .await?;
        let to_peer = peers.remove(0);
        if to_peer.id == from_peer.id {
            warn!(
                "Skip failover for region: {region_id}, from_peer: {from_peer}, trying to failover to the same peer."
            );
            return Ok(());
        }
        let task = RegionMigrationProcedureTask {
            region_id,
            from_peer,
            to_peer,
            timeout: Duration::from_secs(60),
        };

        if let Err(err) = self.region_migration_manager.submit_procedure(task).await {
            return match err {
                // Returns Ok if it's running or table is dropped.
                MigrationRunning { .. } | TableRouteNotFound { .. } => Ok(()),
                err => Err(err),
            };
        };

        Ok(())
    }

    /// Detects the failure of regions.
    fn detect_region_failure(&self) -> Vec<(DatanodeId, RegionId)> {
        self.failure_detector
            .iter()
            .filter_map(|e| {
                // Intentionally not place `current_time_millis()` out of the iteration.
                // The failure detection determination should be happened "just in time",
                // i.e., failed or not has to be compared with the most recent "now".
                // Besides, it might reduce the false positive of failure detection,
                // because during the iteration, heartbeats are coming in as usual,
                // and the `phi`s are still updating.
                if !e.failure_detector().is_available(current_time_millis()) {
                    Some(*e.region_ident())
                } else {
                    None
                }
            })
            .collect::<Vec<_>>()
    }

    /// Updates the state of corresponding failure detectors.
    fn on_heartbeat_arrived(&self, heartbeat: DatanodeHeartbeat) {
        for region_id in heartbeat.regions {
            let detecting_region = (heartbeat.datanode_id, region_id);
            let mut detector = self
                .failure_detector
                .region_failure_detector(detecting_region);
            detector.heartbeat(heartbeat.timestamp);
        }
    }

    fn clear(&self) {
        self.failure_detector.clear();
    }
}

#[cfg(test)]
pub(crate) mod tests {
    use std::assert_matches::assert_matches;
    use std::sync::{Arc, Mutex};
    use std::time::Duration;

    use common_meta::ddl::RegionFailureDetectorController;
    use common_meta::key::maintenance;
    use common_meta::peer::Peer;
    use common_meta::test_util::NoopPeerLookupService;
    use common_time::util::current_time_millis;
    use rand::Rng;
    use store_api::storage::RegionId;
    use tokio::sync::mpsc::Sender;
    use tokio::sync::oneshot;
    use tokio::time::sleep;

    use crate::procedure::region_migration::manager::RegionMigrationManager;
    use crate::procedure::region_migration::test_util::TestingEnv;
    use crate::region::supervisor::{
        DatanodeHeartbeat, Event, RegionFailureDetectorControl, RegionSupervisor,
        RegionSupervisorTicker,
    };
    use crate::selector::test_utils::{new_test_selector_context, RandomNodeSelector};

    pub(crate) fn new_test_supervisor() -> (RegionSupervisor, Sender<Event>) {
        let env = TestingEnv::new();
        let selector_context = new_test_selector_context();
        let selector = Arc::new(RandomNodeSelector::new(vec![Peer::empty(1)]));
        let context_factory = env.context_factory();
        let region_migration_manager = Arc::new(RegionMigrationManager::new(
            env.procedure_manager().clone(),
            context_factory,
        ));
        let maintenance_mode_manager =
            Arc::new(maintenance::MaintenanceModeManager::new(env.kv_backend()));
        let peer_lookup = Arc::new(NoopPeerLookupService);
        let (tx, rx) = RegionSupervisor::channel();

        (
            RegionSupervisor::new(
                rx,
                Default::default(),
                selector_context,
                selector,
                region_migration_manager,
                maintenance_mode_manager,
                peer_lookup,
            ),
            tx,
        )
    }

    #[tokio::test]
    async fn test_heartbeat() {
        let (mut supervisor, sender) = new_test_supervisor();
        tokio::spawn(async move { supervisor.run().await });

        sender
            .send(Event::HeartbeatArrived(DatanodeHeartbeat {
                datanode_id: 0,
                regions: vec![RegionId::new(1, 1)],
                timestamp: 100,
            }))
            .await
            .unwrap();
        let (tx, rx) = oneshot::channel();
        sender.send(Event::Dump(tx)).await.unwrap();
        let detector = rx.await.unwrap();
        assert!(detector.contains(&(0, RegionId::new(1, 1))));

        // Clear up
        sender.send(Event::Clear).await.unwrap();
        let (tx, rx) = oneshot::channel();
        sender.send(Event::Dump(tx)).await.unwrap();
        assert!(rx.await.unwrap().is_empty());

        fn generate_heartbeats(datanode_id: u64, region_ids: Vec<u32>) -> Vec<DatanodeHeartbeat> {
            let mut rng = rand::rng();
            let start = current_time_millis();
            (0..2000)
                .map(|i| DatanodeHeartbeat {
                    timestamp: start + i * 1000 + rng.random_range(0..100),
                    datanode_id,
                    regions: region_ids
                        .iter()
                        .map(|number| RegionId::new(0, *number))
                        .collect(),
                })
                .collect::<Vec<_>>()
        }

        let heartbeats = generate_heartbeats(100, vec![1, 2, 3]);
        let last_heartbeat_time = heartbeats.last().unwrap().timestamp;
        for heartbeat in heartbeats {
            sender
                .send(Event::HeartbeatArrived(heartbeat))
                .await
                .unwrap();
        }

        let (tx, rx) = oneshot::channel();
        sender.send(Event::Dump(tx)).await.unwrap();
        let detector = rx.await.unwrap();
        assert_eq!(detector.len(), 3);

        for e in detector.iter() {
            let fd = e.failure_detector();
            let acceptable_heartbeat_pause_millis = fd.acceptable_heartbeat_pause_millis() as i64;
            let start = last_heartbeat_time;

            // Within the "acceptable_heartbeat_pause_millis" period, phi is zero ...
            for i in 1..=acceptable_heartbeat_pause_millis / 1000 {
                let now = start + i * 1000;
                assert_eq!(fd.phi(now), 0.0);
            }

            // ... then in less than two seconds, phi is above the threshold.
            // The same effect can be seen in the diagrams in Akka's document.
            let now = start + acceptable_heartbeat_pause_millis + 1000;
            assert!(fd.phi(now) < fd.threshold() as _);
            let now = start + acceptable_heartbeat_pause_millis + 2000;
            assert!(fd.phi(now) > fd.threshold() as _);
        }
    }

    #[tokio::test]
    async fn test_supervisor_ticker() {
        let (tx, mut rx) = tokio::sync::mpsc::channel(128);
        let ticker = RegionSupervisorTicker {
            tick_handle: Mutex::new(None),
            tick_interval: Duration::from_millis(10),
            sender: tx,
        };
        // It's ok if we start the ticker again.
        for _ in 0..2 {
            ticker.start();
            sleep(Duration::from_millis(100)).await;
            ticker.stop();
            assert!(!rx.is_empty());
            while let Ok(event) = rx.try_recv() {
                assert_matches!(event, Event::Tick | Event::Clear);
            }
        }
    }

    #[tokio::test]
    async fn test_region_failure_detector_controller() {
        let (mut supervisor, sender) = new_test_supervisor();
        let controller = RegionFailureDetectorControl::new(sender.clone());
        tokio::spawn(async move { supervisor.run().await });
        let detecting_region = (1, RegionId::new(1, 1));
        controller
            .register_failure_detectors(vec![detecting_region])
            .await;

        let (tx, rx) = oneshot::channel();
        sender.send(Event::Dump(tx)).await.unwrap();
        let detector = rx.await.unwrap();
        let region_detector = detector.region_failure_detector(detecting_region).clone();

        // Registers failure detector again
        controller
            .register_failure_detectors(vec![detecting_region])
            .await;
        let (tx, rx) = oneshot::channel();
        sender.send(Event::Dump(tx)).await.unwrap();
        let detector = rx.await.unwrap();
        let got = detector.region_failure_detector(detecting_region).clone();
        assert_eq!(region_detector, got);

        controller
            .deregister_failure_detectors(vec![detecting_region])
            .await;
        let (tx, rx) = oneshot::channel();
        sender.send(Event::Dump(tx)).await.unwrap();
        assert!(rx.await.unwrap().is_empty());
    }
}