frontend/instance/
jaeger.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashMap;
use std::sync::Arc;

use async_trait::async_trait;
use catalog::CatalogManagerRef;
use common_function::function::{Function, FunctionRef};
use common_function::scalars::json::json_get::{
    JsonGetBool, JsonGetFloat, JsonGetInt, JsonGetString,
};
use common_function::scalars::udf::create_udf;
use common_function::state::FunctionState;
use common_query::Output;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use datafusion::dataframe::DataFrame;
use datafusion::execution::context::SessionContext;
use datafusion::execution::SessionStateBuilder;
use datafusion_expr::{col, lit, lit_timestamp_nano, wildcard, Expr};
use query::QueryEngineRef;
use serde_json::Value as JsonValue;
use servers::error::{
    CatalogSnafu, CollectRecordbatchSnafu, DataFusionSnafu, Result as ServerResult,
    TableNotFoundSnafu,
};
use servers::http::jaeger::{QueryTraceParams, JAEGER_QUERY_TABLE_NAME_KEY};
use servers::otlp::trace::{
    DURATION_NANO_COLUMN, SERVICE_NAME_COLUMN, SPAN_ATTRIBUTES_COLUMN, SPAN_KIND_COLUMN,
    SPAN_KIND_PREFIX, SPAN_NAME_COLUMN, TIMESTAMP_COLUMN, TRACE_ID_COLUMN, TRACE_TABLE_NAME,
};
use servers::query_handler::JaegerQueryHandler;
use session::context::QueryContextRef;
use snafu::{OptionExt, ResultExt};
use table::requests::{TABLE_DATA_MODEL, TABLE_DATA_MODEL_TRACE_V1};
use table::table::adapter::DfTableProviderAdapter;

use super::Instance;

const DEFAULT_LIMIT: usize = 100;

#[async_trait]
impl JaegerQueryHandler for Instance {
    async fn get_services(&self, ctx: QueryContextRef) -> ServerResult<Output> {
        // It's equivalent to `SELECT DISTINCT(service_name) FROM {db}.{trace_table}`.
        Ok(query_trace_table(
            ctx,
            self.catalog_manager(),
            self.query_engine(),
            vec![col(SERVICE_NAME_COLUMN)],
            vec![],
            Some(DEFAULT_LIMIT),
            None,
            true,
        )
        .await?)
    }

    async fn get_operations(
        &self,
        ctx: QueryContextRef,
        service_name: &str,
        span_kind: Option<&str>,
    ) -> ServerResult<Output> {
        let mut filters = vec![col(SERVICE_NAME_COLUMN).eq(lit(service_name))];

        if let Some(span_kind) = span_kind {
            filters.push(col(SPAN_KIND_COLUMN).eq(lit(format!(
                "{}{}",
                SPAN_KIND_PREFIX,
                span_kind.to_uppercase()
            ))));
        }

        // It's equivalent to
        //
        // ```
        // SELECT
        //   span_name,
        //   span_kind
        // FROM
        //   {db}.{trace_table}
        // WHERE
        //   service_name = '{service_name}'
        // ORDER BY
        //   timestamp
        // ```.
        Ok(query_trace_table(
            ctx,
            self.catalog_manager(),
            self.query_engine(),
            vec![
                col(SPAN_NAME_COLUMN),
                col(SPAN_KIND_COLUMN),
                col(SERVICE_NAME_COLUMN),
            ],
            filters,
            Some(DEFAULT_LIMIT),
            None,
            false,
        )
        .await?)
    }

    async fn get_trace(&self, ctx: QueryContextRef, trace_id: &str) -> ServerResult<Output> {
        // It's equivalent to
        //
        // ```
        // SELECT
        //   *
        // FROM
        //   {db}.{trace_table}
        // WHERE
        //   trace_id = '{trace_id}'
        // ORDER BY
        //   timestamp
        // ```.
        let selects = vec![wildcard()];

        let filters = vec![col(TRACE_ID_COLUMN).eq(lit(trace_id))];

        Ok(query_trace_table(
            ctx,
            self.catalog_manager(),
            self.query_engine(),
            selects,
            filters,
            Some(DEFAULT_LIMIT),
            None,
            false,
        )
        .await?)
    }

    async fn find_traces(
        &self,
        ctx: QueryContextRef,
        query_params: QueryTraceParams,
    ) -> ServerResult<Output> {
        let selects = vec![wildcard()];

        let mut filters = vec![];

        if let Some(operation_name) = query_params.operation_name {
            filters.push(col(SPAN_NAME_COLUMN).eq(lit(operation_name)));
        }

        if let Some(start_time) = query_params.start_time {
            filters.push(col(TIMESTAMP_COLUMN).gt_eq(lit_timestamp_nano(start_time)));
        }

        if let Some(end_time) = query_params.end_time {
            filters.push(col(TIMESTAMP_COLUMN).lt_eq(lit_timestamp_nano(end_time)));
        }

        if let Some(min_duration) = query_params.min_duration {
            filters.push(col(DURATION_NANO_COLUMN).gt_eq(lit(min_duration)));
        }

        if let Some(max_duration) = query_params.max_duration {
            filters.push(col(DURATION_NANO_COLUMN).lt_eq(lit(max_duration)));
        }

        Ok(query_trace_table(
            ctx,
            self.catalog_manager(),
            self.query_engine(),
            selects,
            filters,
            Some(DEFAULT_LIMIT),
            query_params.tags,
            false,
        )
        .await?)
    }
}

#[allow(clippy::too_many_arguments)]
async fn query_trace_table(
    ctx: QueryContextRef,
    catalog_manager: &CatalogManagerRef,
    query_engine: &QueryEngineRef,
    selects: Vec<Expr>,
    filters: Vec<Expr>,
    limit: Option<usize>,
    tags: Option<HashMap<String, JsonValue>>,
    distinct: bool,
) -> ServerResult<Output> {
    let table_name = ctx
        .extension(JAEGER_QUERY_TABLE_NAME_KEY)
        .unwrap_or(TRACE_TABLE_NAME);

    let table = catalog_manager
        .table(
            ctx.current_catalog(),
            &ctx.current_schema(),
            table_name,
            Some(&ctx),
        )
        .await
        .context(CatalogSnafu)?
        .with_context(|| TableNotFoundSnafu {
            table: table_name,
            catalog: ctx.current_catalog(),
            schema: ctx.current_schema(),
        })?;

    let is_data_model_v1 = table
        .table_info()
        .meta
        .options
        .extra_options
        .get(TABLE_DATA_MODEL)
        .map(|s| s.as_str())
        == Some(TABLE_DATA_MODEL_TRACE_V1);

    let df_context = create_df_context(query_engine, ctx.clone())?;

    let dataframe = df_context
        .read_table(Arc::new(DfTableProviderAdapter::new(table)))
        .context(DataFusionSnafu)?;

    let dataframe = dataframe.select(selects).context(DataFusionSnafu)?;

    // Apply all filters.
    let dataframe = filters
        .into_iter()
        .chain(tags.map_or(Ok(vec![]), |t| {
            tags_filters(&dataframe, t, is_data_model_v1)
        })?)
        .try_fold(dataframe, |df, expr| {
            df.filter(expr).context(DataFusionSnafu)
        })?;

    // Apply the distinct if needed.
    let dataframe = if distinct {
        dataframe.distinct().context(DataFusionSnafu)?
    } else {
        // for non distinct query, sort by timestamp to make results stable
        dataframe
            .sort_by(vec![col(TIMESTAMP_COLUMN)])
            .context(DataFusionSnafu)?
    };

    // Apply the limit if needed.
    let dataframe = if let Some(limit) = limit {
        dataframe.limit(0, Some(limit)).context(DataFusionSnafu)?
    } else {
        dataframe
    };

    // Execute the query and collect the result.
    let stream = dataframe.execute_stream().await.context(DataFusionSnafu)?;

    let output = Output::new_with_stream(Box::pin(
        RecordBatchStreamAdapter::try_new(stream).context(CollectRecordbatchSnafu)?,
    ));

    Ok(output)
}

// The current implementation registers UDFs during the planning stage, which makes it difficult
// to utilize them through DataFrame APIs. To address this limitation, we create a new session
// context and register the required UDFs, allowing them to be decoupled from the global context.
// TODO(zyy17): Is it possible or necessary to reuse the existing session context?
fn create_df_context(
    query_engine: &QueryEngineRef,
    ctx: QueryContextRef,
) -> ServerResult<SessionContext> {
    let df_context = SessionContext::new_with_state(
        SessionStateBuilder::new_from_existing(query_engine.engine_state().session_state()).build(),
    );

    // The following JSON UDFs will be used for tags filters on v0 data model.
    let udfs: Vec<FunctionRef> = vec![
        Arc::new(JsonGetInt),
        Arc::new(JsonGetFloat),
        Arc::new(JsonGetBool),
        Arc::new(JsonGetString),
    ];

    for udf in udfs {
        df_context.register_udf(create_udf(
            udf,
            ctx.clone(),
            Arc::new(FunctionState::default()),
        ));
    }

    Ok(df_context)
}

fn json_tag_filters(
    dataframe: &DataFrame,
    tags: HashMap<String, JsonValue>,
) -> ServerResult<Vec<Expr>> {
    let mut filters = vec![];

    // NOTE: The key of the tags may contain `.`, for example: `http.status_code`, so we need to use `["http.status_code"]` in json path to access the value.
    for (key, value) in tags.iter() {
        if let JsonValue::String(value) = value {
            filters.push(
                dataframe
                    .registry()
                    .udf(JsonGetString {}.name())
                    .context(DataFusionSnafu)?
                    .call(vec![
                        col(SPAN_ATTRIBUTES_COLUMN),
                        lit(format!("[\"{}\"]", key)),
                    ])
                    .eq(lit(value)),
            );
        }
        if let JsonValue::Number(value) = value {
            if value.is_i64() {
                filters.push(
                    dataframe
                        .registry()
                        .udf(JsonGetInt {}.name())
                        .context(DataFusionSnafu)?
                        .call(vec![
                            col(SPAN_ATTRIBUTES_COLUMN),
                            lit(format!("[\"{}\"]", key)),
                        ])
                        .eq(lit(value.as_i64().unwrap())),
                );
            }
            if value.is_f64() {
                filters.push(
                    dataframe
                        .registry()
                        .udf(JsonGetFloat {}.name())
                        .context(DataFusionSnafu)?
                        .call(vec![
                            col(SPAN_ATTRIBUTES_COLUMN),
                            lit(format!("[\"{}\"]", key)),
                        ])
                        .eq(lit(value.as_f64().unwrap())),
                );
            }
        }
        if let JsonValue::Bool(value) = value {
            filters.push(
                dataframe
                    .registry()
                    .udf(JsonGetBool {}.name())
                    .context(DataFusionSnafu)?
                    .call(vec![
                        col(SPAN_ATTRIBUTES_COLUMN),
                        lit(format!("[\"{}\"]", key)),
                    ])
                    .eq(lit(*value)),
            );
        }
    }

    Ok(filters)
}

fn flatten_tag_filters(tags: HashMap<String, JsonValue>) -> ServerResult<Vec<Expr>> {
    let filters = tags
        .into_iter()
        .filter_map(|(key, value)| {
            let key = format!("\"span_attributes.{}\"", key);
            match value {
                JsonValue::String(value) => Some(col(key).eq(lit(value))),
                JsonValue::Number(value) => {
                    if value.is_f64() {
                        // safe to unwrap as checked previously
                        Some(col(key).eq(lit(value.as_f64().unwrap())))
                    } else {
                        Some(col(key).eq(lit(value.as_i64().unwrap())))
                    }
                }
                JsonValue::Bool(value) => Some(col(key).eq(lit(value))),
                JsonValue::Null => Some(col(key).is_null()),
                // not supported at the moment
                JsonValue::Array(_value) => None,
                JsonValue::Object(_value) => None,
            }
        })
        .collect();
    Ok(filters)
}

fn tags_filters(
    dataframe: &DataFrame,
    tags: HashMap<String, JsonValue>,
    is_data_model_v1: bool,
) -> ServerResult<Vec<Expr>> {
    if is_data_model_v1 {
        flatten_tag_filters(tags)
    } else {
        json_tag_filters(dataframe, tags)
    }
}