flow/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! utilities for managing state of dataflow execution

use std::collections::{BTreeMap, BTreeSet};
use std::ops::Bound;
use std::sync::Arc;

use common_meta::key::flow::flow_state::FlowStat;
use common_telemetry::trace;
use datatypes::value::Value;
use get_size2::GetSize;
use smallvec::{smallvec, SmallVec};
use tokio::sync::{mpsc, oneshot, RwLock};
use tokio::time::Instant;

use crate::error::InternalSnafu;
use crate::expr::{EvalError, ScalarExpr};
use crate::repr::{value_to_internal_ts, DiffRow, Duration, KeyValDiffRow, Row, Timestamp};

/// A batch of updates, arranged by key
pub type Batch = BTreeMap<Row, SmallVec<[DiffRow; 2]>>;

/// Get a estimate of heap size of a value
pub fn get_value_heap_size(v: &Value) -> usize {
    match v {
        Value::Binary(bin) => bin.len(),
        Value::String(s) => s.len(),
        Value::List(list) => list.items().iter().map(get_value_heap_size).sum(),
        _ => 0,
    }
}

#[derive(Clone)]
pub struct SizeReportSender {
    inner: mpsc::Sender<oneshot::Sender<FlowStat>>,
}

impl SizeReportSender {
    pub fn new() -> (Self, StateReportHandler) {
        let (tx, rx) = mpsc::channel(1);
        let zelf = Self { inner: tx };
        (zelf, rx)
    }

    /// Query the size report, will timeout after one second if no response
    pub async fn query(&self, timeout: std::time::Duration) -> crate::Result<FlowStat> {
        let (tx, rx) = oneshot::channel();
        self.inner.send(tx).await.map_err(|_| {
            InternalSnafu {
                reason: "failed to send size report request due to receiver dropped",
            }
            .build()
        })?;
        let timeout = tokio::time::timeout(timeout, rx);
        timeout
            .await
            .map_err(|_elapsed| {
                InternalSnafu {
                    reason: "failed to receive size report after one second timeout",
                }
                .build()
            })?
            .map_err(|_| {
                InternalSnafu {
                    reason: "failed to receive size report due to sender dropped",
                }
                .build()
            })
    }
}

/// Handle the size report request, and send the report back
pub type StateReportHandler = mpsc::Receiver<oneshot::Sender<FlowStat>>;

/// A spine of batches, arranged by timestamp
/// TODO(discord9): consider internally index by key, value, and timestamp for faster lookup
pub type Spine = BTreeMap<Timestamp, Batch>;

/// Determine when should a key expire according to it's event timestamp in key.
///
/// If a key is expired, any future updates to it should be ignored.
///
/// Note that key is expired by it's event timestamp (contained in the key), not by the time it's inserted (system timestamp).
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub struct KeyExpiryManager {
    /// A map from event timestamp to key, used for expire keys.
    event_ts_to_key: BTreeMap<Timestamp, BTreeSet<Row>>,

    /// Duration after which a key is considered expired, and will be removed from state
    key_expiration_duration: Option<Duration>,

    /// Expression to get timestamp from key row
    event_timestamp_from_row: Option<ScalarExpr>,
}

impl GetSize for KeyExpiryManager {
    fn get_heap_size(&self) -> usize {
        let row_size = if let Some(row_size) = &self
            .event_ts_to_key
            .first_key_value()
            .map(|(_, v)| v.first().get_heap_size())
        {
            *row_size
        } else {
            0
        };
        self.event_ts_to_key
            .values()
            .map(|v| v.len() * row_size + std::mem::size_of::<i64>())
            .sum::<usize>()
    }
}

impl KeyExpiryManager {
    pub fn new(
        key_expiration_duration: Option<Duration>,
        event_timestamp_from_row: Option<ScalarExpr>,
    ) -> Self {
        Self {
            event_ts_to_key: Default::default(),
            key_expiration_duration,
            event_timestamp_from_row,
        }
    }

    /// Extract event timestamp from key row.
    ///
    /// If no expire state is set, return None.
    pub fn extract_event_ts(&self, row: &Row) -> Result<Option<Timestamp>, EvalError> {
        let ts = self
            .event_timestamp_from_row
            .as_ref()
            .map(|e| e.eval(&row.inner))
            .transpose()?
            .map(value_to_internal_ts)
            .transpose()?;
        Ok(ts)
    }

    /// Return timestamp that should be expired by the time `now` by compute `now - expiration_duration`
    pub fn compute_expiration_timestamp(&self, now: Timestamp) -> Option<Timestamp> {
        self.key_expiration_duration.map(|d| now - d)
    }

    /// Update the event timestamp to key mapping.
    ///
    /// - If given key is expired by now (that is less than `now - expiry_duration`), return the amount of time it's expired.
    /// - If it's not expired, return None
    pub fn get_expire_duration_and_update_event_ts(
        &mut self,
        now: Timestamp,
        row: &Row,
    ) -> Result<Option<Duration>, EvalError> {
        let Some(event_ts) = self.extract_event_ts(row)? else {
            return Ok(None);
        };

        self.event_ts_to_key
            .entry(event_ts)
            .or_default()
            .insert(row.clone());

        if let Some(expire_time) = self.compute_expiration_timestamp(now) {
            if expire_time > event_ts {
                // return how much time it's expired
                return Ok(Some(expire_time - event_ts));
            }
        }

        Ok(None)
    }

    /// Get the expire duration of a key, if it's expired by now.
    ///
    /// Return None if the key is not expired
    pub fn get_expire_duration(
        &self,
        now: Timestamp,
        row: &Row,
    ) -> Result<Option<Duration>, EvalError> {
        let Some(event_ts) = self.extract_event_ts(row)? else {
            return Ok(None);
        };

        if let Some(expire_time) = self.compute_expiration_timestamp(now) {
            if expire_time > event_ts {
                // return how much time it's expired
                return Ok(Some(expire_time - event_ts));
            }
        }

        Ok(None)
    }

    /// Remove expired keys from the state, and return an iterator of removed keys with
    /// event_ts less than expire time (i.e. now - key_expiration_duration).
    pub fn remove_expired_keys(&mut self, now: Timestamp) -> Option<impl Iterator<Item = Row>> {
        let expire_time = self.compute_expiration_timestamp(now)?;

        let mut before = self.event_ts_to_key.split_off(&expire_time);
        std::mem::swap(&mut before, &mut self.event_ts_to_key);

        Some(before.into_iter().flat_map(|(_ts, keys)| keys.into_iter()))
    }
}

/// A shared state of key-value pair for various state in dataflow execution.
///
/// i.e: Mfp operator with temporal filter need to store it's future output so that it can add now, and delete later.
/// To get all needed updates in a time span, use [`get_updates_in_range`].
///
/// And reduce operator need full state of it's output, so that it can query (and modify by calling [`apply_updates`])
/// existing state, also need a way to expire keys. To get a key's current value, use [`get`] with time being `now`
/// so it's like:
/// `mfp operator -> arrange(store futures only, no expire) -> reduce operator <-> arrange(full, with key expiring time) -> output`
///
/// Note the two way arrow between reduce operator and arrange, it's because reduce operator need to query existing state
/// and also need to update existing state.
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub struct Arrangement {
    /// A name or identifier for the arrangement which can be used for debugging or logging purposes.
    /// This field is not critical to the functionality but aids in monitoring and management of arrangements.
    name: Vec<String>,

    /// Manages a collection of pending updates in a `BTreeMap` where each key is a timestamp and each value is a `Batch` of updates.
    /// Updates are grouped into batched based on their timestamps.
    /// Each batch covers a range of time from the last key (exclusive) to the current key (inclusive).
    ///
    /// - Updates with a timestamp (`update_ts`) that falls between two keys are placed in the batch of the higher key.
    ///   For example, if the keys are `1, 5, 7, 9` and `update_ts` is `6`, the update goes into the batch with key `7`.
    /// - Updates with a timestamp before the first key are categorized under the first key.
    /// - Updates with a timestamp greater than the highest key result in a new batch being created with that timestamp as the key.
    ///
    /// The first key represents the current state and includes consolidated updates from the past. It is always set to `now`.
    /// Each key should have only one update per batch with a `diff=1` for the batch representing the current time (`now`).
    ///
    /// Since updates typically occur as a delete followed by an insert, a small vector of size 2 is used to store updates for efficiency.
    ///
    /// TODO(discord9): Consider balancing the batch size?
    spine: Spine,

    /// Indicates whether the arrangement maintains a complete history of updates.
    /// - `true`: Maintains all past and future updates, necessary for full state reconstruction at any point in time.
    /// - `false`: Only future updates are retained, optimizing for scenarios where past state is irrelevant and conserving resources.
    ///            Useful for case like `map -> arrange -> reduce`.
    full_arrangement: bool,

    /// Indicates whether the arrangement has been modified since its creation.
    /// - `true`: The arrangement has been written to, meaning it has received updates.
    ///           Cloning this arrangement is generally unsafe as it may lead to inconsistencies if the clone is modified independently.
    ///           However, cloning is safe when both the original and the clone require a full arrangement, as this ensures consistency.
    /// - `false`: The arrangement is in its initial state and has not been modified. It can be safely cloned and shared
    ///            without concerns of carrying over unintended state changes.
    is_written: bool,

    /// Manage the expire state of the arrangement.
    expire_state: Option<KeyExpiryManager>,

    /// The time that the last compaction happened, also known as the current time.
    last_compaction_time: Option<Timestamp>,

    /// Estimated size of the arrangement in heap size.
    estimated_size: usize,
    last_size_update: Instant,
    size_update_interval: tokio::time::Duration,
}

impl Arrangement {
    fn compute_size(&self) -> usize {
        self.spine
            .values()
            .map(|v| {
                let per_entry_size = v
                    .first_key_value()
                    .map(|(k, v)| {
                        k.get_heap_size()
                            + v.len() * v.first().map(|r| r.get_heap_size()).unwrap_or(0)
                    })
                    .unwrap_or(0);
                std::mem::size_of::<i64>() + v.len() * per_entry_size
            })
            .sum::<usize>()
            + self.expire_state.get_heap_size()
            + self.name.get_heap_size()
    }

    fn update_and_fetch_size(&mut self) -> usize {
        if self.last_size_update.elapsed() > self.size_update_interval {
            self.estimated_size = self.compute_size();
            self.last_size_update = Instant::now();
        }
        self.estimated_size
    }
}

impl GetSize for Arrangement {
    fn get_heap_size(&self) -> usize {
        self.estimated_size
    }
}

impl Default for Arrangement {
    fn default() -> Self {
        Self {
            spine: Default::default(),
            full_arrangement: false,
            is_written: false,
            expire_state: None,
            last_compaction_time: None,
            name: Vec::new(),
            estimated_size: 0,
            last_size_update: Instant::now(),
            size_update_interval: tokio::time::Duration::from_secs(3),
        }
    }
}

impl Arrangement {
    pub fn new_with_name(name: Vec<String>) -> Self {
        Self {
            spine: Default::default(),
            full_arrangement: false,
            is_written: false,
            expire_state: None,
            last_compaction_time: None,
            name,
            estimated_size: 0,
            last_size_update: Instant::now(),
            size_update_interval: tokio::time::Duration::from_secs(3),
        }
    }

    pub fn get_expire_state(&self) -> Option<&KeyExpiryManager> {
        self.expire_state.as_ref()
    }

    pub fn set_expire_state(&mut self, expire_state: KeyExpiryManager) {
        self.expire_state = Some(expire_state);
    }

    /// Apply updates into spine, with no respect of whether the updates are in futures, past, or now.
    ///
    /// Return the maximum expire time (already expire by how much time) of all updates if any keys is already expired.
    pub fn apply_updates(
        &mut self,
        now: Timestamp,
        updates: Vec<KeyValDiffRow>,
    ) -> Result<Option<Duration>, EvalError> {
        self.is_written = true;

        let mut max_expired_by: Option<Duration> = None;

        for ((key, val), update_ts, diff) in updates {
            // check if the key is expired
            if let Some(s) = &mut self.expire_state {
                if let Some(expired_by) = s.get_expire_duration_and_update_event_ts(now, &key)? {
                    max_expired_by = max_expired_by.max(Some(expired_by));
                    trace!(
                        "Expired key: {:?}, expired by: {:?} with time being now={}",
                        key,
                        expired_by,
                        now
                    );
                    continue;
                }
            }

            // If the `highest_ts` is less than `update_ts`, we need to create a new batch with key being `update_ts`.
            if self
                .spine
                .last_key_value()
                .map(|(highest_ts, _)| *highest_ts < update_ts)
                .unwrap_or(true)
            {
                self.spine.insert(update_ts, Default::default());
            }

            // Get the first batch with key that's greater or equal to `update_ts`.
            let (_, batch) = self
                .spine
                .range_mut(update_ts..)
                .next()
                .expect("Previous insert should have created the batch");

            let key_updates = batch.entry(key).or_default();
            key_updates.push((val, update_ts, diff));

            // a stable sort make updates sort in order of insertion
            // without changing the order of updates within same tick
            key_updates.sort_by_key(|(_val, ts, _diff)| *ts);
        }
        self.update_and_fetch_size();
        Ok(max_expired_by)
    }

    /// Find out the time of next update in the future that is the next update with `timestamp > now`.
    pub fn get_next_update_time(&self, now: &Timestamp) -> Option<Timestamp> {
        // iter over batches that only have updates of `timestamp>now` and find the first non empty batch, then get the minimum timestamp in that batch
        for (_ts, batch) in self.spine.range((Bound::Excluded(now), Bound::Unbounded)) {
            let min_ts = batch
                .iter()
                .flat_map(|(_k, v)| v.iter().map(|(_, ts, _)| *ts).min())
                .min();

            if min_ts.is_some() {
                return min_ts;
            }
        }

        None
    }

    /// Get the last compaction time.
    pub fn last_compaction_time(&self) -> Option<Timestamp> {
        self.last_compaction_time
    }

    /// Split spine off at `split_ts`, and return the spine that's before `split_ts` (including `split_ts`).
    fn split_spine_le(&mut self, split_ts: &Timestamp) -> Spine {
        self.split_batch_at(split_ts);
        let mut before = self.spine.split_off(&(split_ts + 1));
        std::mem::swap(&mut before, &mut self.spine);
        before
    }

    /// Split the batch at `split_ts` into two parts.
    fn split_batch_at(&mut self, split_ts: &Timestamp) {
        // FAST PATH:
        //
        // The `split_ts` hit the boundary of a batch, nothing to do.
        if self.spine.contains_key(split_ts) {
            return;
        }

        let Some((_, batch_to_split)) = self.spine.range_mut(split_ts..).next() else {
            return; // No batch to split, nothing to do.
        };

        // SLOW PATH:
        //
        // The `split_ts` is in the middle of a batch, we need to split the batch into two parts.
        let mut new_batch = Batch::default();

        batch_to_split.retain(|key, updates| {
            let mut new_updates = SmallVec::default();

            updates.retain(|(val, ts, diff)| {
                if *ts <= *split_ts {
                    // Move the updates that are less than or equal to `split_ts` to the new batch.
                    new_updates.push((val.clone(), *ts, *diff));
                }
                // Keep the updates that are greater than `split_ts` in the current batch.
                *ts > *split_ts
            });

            if !new_updates.is_empty() {
                new_batch.insert(key.clone(), new_updates);
            }

            // Keep the key in the current batch if it still has updates.
            !updates.is_empty()
        });

        if !new_batch.is_empty() {
            self.spine.insert(*split_ts, new_batch);
        }
    }

    /// Advance time to `now` and consolidate all older (`now` included) updates to the first key.
    ///
    /// Return the maximum expire time(already expire by how much time) of all updates if any keys is already expired.
    pub fn compact_to(&mut self, now: Timestamp) -> Result<Option<Duration>, EvalError> {
        let mut max_expired_by: Option<Duration> = None;

        let batches_to_compact = self.split_spine_le(&now);
        self.last_compaction_time = Some(now);

        // If a full arrangement is not needed, we can just discard everything before and including now,
        if !self.full_arrangement {
            return Ok(None);
        }

        // else we update them into current state.
        let mut compacting_batch = Batch::default();

        for (_, batch) in batches_to_compact {
            for (key, updates) in batch {
                // check if the key is expired
                if let Some(s) = &mut self.expire_state {
                    if let Some(expired_by) =
                        s.get_expire_duration_and_update_event_ts(now, &key)?
                    {
                        max_expired_by = max_expired_by.max(Some(expired_by));
                        continue;
                    }
                }

                let mut row = compacting_batch
                    .remove(&key)
                    // only one row in the updates during compaction
                    .and_then(|mut updates| updates.pop());

                for update in updates {
                    row = compact_diff_row(row, &update);
                }
                if let Some(compacted_update) = row {
                    compacting_batch.insert(key, smallvec![compacted_update]);
                }
            }
        }

        // insert the compacted batch into spine with key being `now`
        self.spine.insert(now, compacting_batch);
        self.update_and_fetch_size();
        Ok(max_expired_by)
    }

    /// Get the updates of the arrangement from the given range of time.
    pub fn get_updates_in_range<R: std::ops::RangeBounds<Timestamp> + Clone>(
        &self,
        range: R,
    ) -> Vec<KeyValDiffRow> {
        // Include the next batch in case the range is not aligned with the boundary of a batch.
        let batches = match range.end_bound() {
            Bound::Included(t) => self.spine.range(range.clone()).chain(
                self.spine
                    .range((Bound::Excluded(t), Bound::Unbounded))
                    .next(),
            ),
            Bound::Excluded(t) => self.spine.range(range.clone()).chain(
                self.spine
                    .range((Bound::Included(t), Bound::Unbounded))
                    .next(),
            ),
            _ => self.spine.range(range.clone()).chain(None),
        };

        let mut res = vec![];
        for (_, batch) in batches {
            for (key, updates) in batch {
                for (val, ts, diff) in updates {
                    if range.contains(ts) {
                        res.push(((key.clone(), val.clone()), *ts, *diff));
                    }
                }
            }
        }
        res
    }

    /// Expire keys in now that are older than expire_time, intended for reducing memory usage and limit late data arrive
    pub fn truncate_expired_keys(&mut self, now: Timestamp) {
        if let Some(s) = &mut self.expire_state {
            if let Some(expired_keys) = s.remove_expired_keys(now) {
                for key in expired_keys {
                    for (_, batch) in self.spine.iter_mut() {
                        batch.remove(&key);
                    }
                }
            }
        }
    }

    /// Get current state of things.
    ///
    /// Useful for query existing keys (i.e. reduce and join operator need to query existing state)
    pub fn get(&self, now: Timestamp, key: &Row) -> Option<DiffRow> {
        // FAST PATH:
        //
        // If `now <= last_compaction_time`, and it's full arrangement, we can directly return the value
        // from the current state (which should be the first batch in the spine if it exist).
        if let Some(last_compaction_time) = self.last_compaction_time()
            && now <= last_compaction_time
            && self.full_arrangement
        {
            // if the last compaction time's batch is not exist, it means the spine doesn't have it's first batch as current value
            return self
                .spine
                .get(&last_compaction_time)
                .and_then(|batch| batch.get(key))
                .and_then(|updates| updates.first().cloned());
        }

        // SLOW PATH:
        //
        // Accumulate updates from the oldest batch to the batch containing `now`.

        let batches = if self.spine.contains_key(&now) {
            // hit the boundary of a batch
            self.spine.range(..=now).chain(None)
        } else {
            // not hit the boundary of a batch, should include the next batch
            self.spine.range(..=now).chain(
                self.spine
                    .range((Bound::Excluded(now), Bound::Unbounded))
                    .next(),
            )
        };

        let mut final_val = None;
        for (ts, batch) in batches {
            if let Some(updates) = batch.get(key) {
                if *ts <= now {
                    for update in updates {
                        final_val = compact_diff_row(final_val, update);
                    }
                } else {
                    for update in updates.iter().filter(|(_, ts, _)| *ts <= now) {
                        final_val = compact_diff_row(final_val, update);
                    }
                }
            }
        }
        final_val
    }
}

fn compact_diff_row(old_row: Option<DiffRow>, new_row: &DiffRow) -> Option<DiffRow> {
    let (val, ts, diff) = new_row;
    match (old_row, diff) {
        (Some((row, _old_ts, old_diff)), diff) if row == *val && old_diff + diff == 0 => {
            // the key is deleted now
            None
        }
        (Some((row, _old_ts, old_diff)), diff) if row == *val && old_diff + diff != 0 => {
            Some((row, *ts, old_diff + *diff))
        }
        // if old val not equal new val, simple consider it as being overwritten, for each key can only have one value
        // so it make sense to just replace the old value with new value
        _ => Some((val.clone(), *ts, *diff)),
    }
}

/// Simply a type alias for ReadGuard of Arrangement
pub type ArrangeReader<'a> = tokio::sync::RwLockReadGuard<'a, Arrangement>;
/// Simply a type alias for WriteGuard of Arrangement
pub type ArrangeWriter<'a> = tokio::sync::RwLockWriteGuard<'a, Arrangement>;

/// A handler to the inner Arrangement, can be cloned and shared, useful for query it's inner state
#[derive(Debug, Clone)]
pub struct ArrangeHandler {
    inner: Arc<RwLock<Arrangement>>,
}

impl ArrangeHandler {
    /// create a new handler from arrangement
    pub fn from(arr: Arrangement) -> Self {
        Self {
            inner: Arc::new(RwLock::new(arr)),
        }
    }

    /// write lock the arrangement
    pub fn write(&self) -> ArrangeWriter<'_> {
        self.inner.blocking_write()
    }

    /// read lock the arrangement
    pub fn read(&self) -> ArrangeReader<'_> {
        self.inner.blocking_read()
    }

    /// Clone the handler, but only keep the future updates.
    ///
    /// It's a cheap operation, since it's `Arc-ed` and only clone the `Arc`.
    pub fn clone_future_only(&self) -> Option<Self> {
        if self.read().is_written {
            return None;
        }
        Some(Self {
            inner: self.inner.clone(),
        })
    }

    /// Clone the handler, but keep all updates.
    ///
    /// Prevent illegal clone after the arrange have been written,
    /// because that will cause loss of data before clone.
    ///
    /// It's a cheap operation, since it's `Arc-ed` and only clone the `Arc`.
    pub fn clone_full_arrange(&self) -> Option<Self> {
        {
            let zelf = self.read();
            if !zelf.full_arrangement && zelf.is_written {
                return None;
            }
        }

        self.write().full_arrangement = true;
        Some(Self {
            inner: self.inner.clone(),
        })
    }

    pub fn set_full_arrangement(&self, full: bool) {
        self.write().full_arrangement = full;
    }

    pub fn is_full_arrangement(&self) -> bool {
        self.read().full_arrangement
    }
}

#[cfg(test)]
mod test {
    use std::borrow::Borrow;

    use datatypes::value::Value;
    use itertools::Itertools;

    use super::*;

    fn lit(v: impl Into<Value>) -> Row {
        Row::new(vec![v.into()])
    }

    fn kv(key: impl Borrow<Row>, value: impl Borrow<Row>) -> (Row, Row) {
        (key.borrow().clone(), value.borrow().clone())
    }

    #[test]
    fn test_future_get() {
        // test if apply only future updates, whether get(future_time) can operate correctly
        let arr = ArrangeHandler::from(Arrangement::default());

        let mut arr = arr.write();

        let key = lit("a");
        let updates: Vec<KeyValDiffRow> = vec![
            (kv(&key, lit("b")), 1 /* ts */, 1 /* diff */),
            (kv(&key, lit("c")), 2 /* ts */, 1 /* diff */),
            (kv(&key, lit("d")), 3 /* ts */, 1 /* diff */),
        ];

        // all updates above are future updates
        arr.apply_updates(0, updates).unwrap();

        assert_eq!(arr.get(1, &key), Some((lit("b"), 1 /* ts */, 1 /* diff */)));
        assert_eq!(arr.get(2, &key), Some((lit("c"), 2 /* ts */, 1 /* diff */)));
        assert_eq!(arr.get(3, &key), Some((lit("d"), 3 /* ts */, 1 /* diff */)));
    }

    #[test]
    fn only_save_future_updates() {
        // mfp operator's temporal filter need to record future updates so that it can delete on time
        // i.e. insert a record now, delete this record 5 minutes later
        // they will only need to keep future updates(if downstream don't need full arrangement that is)
        let arr = ArrangeHandler::from(Arrangement::default());

        {
            let arr1 = arr.clone_full_arrange();
            assert!(arr1.is_some());
            let arr2 = arr.clone_future_only();
            assert!(arr2.is_some());
        }

        {
            let mut arr = arr.write();
            let updates: Vec<KeyValDiffRow> = vec![
                (kv(lit("a"), lit("x")), 1 /* ts */, 1 /* diff */),
                (kv(lit("b"), lit("y")), 2 /* ts */, 1 /* diff */),
                (kv(lit("c"), lit("z")), 3 /* ts */, 1 /* diff */),
            ];
            // all updates above are future updates
            arr.apply_updates(0, updates).unwrap();

            assert_eq!(
                arr.get_updates_in_range(1..=1),
                vec![(kv(lit("a"), lit("x")), 1 /* ts */, 1 /* diff */)]
            );
            assert_eq!(arr.spine.len(), 3);

            arr.compact_to(1).unwrap();
            assert_eq!(arr.spine.len(), 3);

            let key = &lit("a");
            assert_eq!(arr.get(3, key), Some((lit("x"), 1 /* ts */, 1 /* diff */)));
            let key = &lit("b");
            assert_eq!(arr.get(3, key), Some((lit("y"), 2 /* ts */, 1 /* diff */)));
            let key = &lit("c");
            assert_eq!(arr.get(3, key), Some((lit("z"), 3 /* ts */, 1 /* diff */)));
        }

        assert!(arr.clone_future_only().is_none());
        {
            let arr2 = arr.clone_full_arrange().unwrap();
            let mut arr = arr2.write();
            assert_eq!(arr.spine.len(), 3);

            arr.compact_to(2).unwrap();
            assert_eq!(arr.spine.len(), 2);
            let key = &lit("a");
            assert_eq!(arr.get(3, key), Some((lit("x"), 1 /* ts */, 1 /* diff */)));
            let key = &lit("b");
            assert_eq!(arr.get(3, key), Some((lit("y"), 2 /* ts */, 1 /* diff */)));
            let key = &lit("c");
            assert_eq!(arr.get(3, key), Some((lit("z"), 3 /* ts */, 1 /* diff */)));
        }
    }

    #[test]
    fn test_reduce_expire_keys() {
        let mut arr = Arrangement::default();
        let expire_state = KeyExpiryManager {
            event_ts_to_key: Default::default(),
            key_expiration_duration: Some(10),
            event_timestamp_from_row: Some(ScalarExpr::Column(0)),
        };
        arr.expire_state = Some(expire_state);
        arr.full_arrangement = true;

        let arr = ArrangeHandler::from(arr);

        let updates: Vec<KeyValDiffRow> = vec![
            (kv(lit(1i64), lit("x")), 1 /* ts */, 1 /* diff */),
            (kv(lit(2i64), lit("y")), 2 /* ts */, 1 /* diff */),
            (kv(lit(3i64), lit("z")), 3 /* ts */, 1 /* diff */),
        ];
        {
            let mut arr = arr.write();
            arr.apply_updates(0, updates.clone()).unwrap();
            // repeat the same updates means having multiple updates for the same key
            arr.apply_updates(0, updates).unwrap();

            assert_eq!(
                arr.get_updates_in_range(1..=1),
                vec![
                    (kv(lit(1i64), lit("x")), 1 /* ts */, 1 /* diff */),
                    (kv(lit(1i64), lit("x")), 1 /* ts */, 1 /* diff */)
                ]
            );
            assert_eq!(arr.spine.len(), 3);
            arr.compact_to(1).unwrap();
            assert_eq!(arr.spine.len(), 3);
        }

        {
            let mut arr = arr.write();
            assert_eq!(arr.spine.len(), 3);

            arr.truncate_expired_keys(11);
            assert_eq!(arr.spine.len(), 3);
            let key = &lit(1i64);
            assert_eq!(arr.get(11, key), Some((lit("x"), 1 /* ts */, 2 /* diff */)));
            let key = &lit(2i64);
            assert_eq!(arr.get(11, key), Some((lit("y"), 2 /* ts */, 2 /* diff */)));
            let key = &lit(3i64);
            assert_eq!(arr.get(11, key), Some((lit("z"), 3 /* ts */, 2 /* diff */)));

            arr.truncate_expired_keys(12);
            assert_eq!(arr.spine.len(), 3);
            let key = &lit(1i64);
            assert_eq!(arr.get(12, key), None);
            let key = &lit(2i64);
            assert_eq!(arr.get(12, key), Some((lit("y"), 2 /* ts */, 2 /* diff */)));
            let key = &lit(3i64);
            assert_eq!(arr.get(12, key), Some((lit("z"), 3 /* ts */, 2 /* diff */)));
            assert_eq!(arr.expire_state.as_ref().unwrap().event_ts_to_key.len(), 2);

            arr.truncate_expired_keys(13);
            assert_eq!(arr.spine.len(), 3);
            let key = &lit(1i64);
            assert_eq!(arr.get(13, key), None);
            let key = &lit(2i64);
            assert_eq!(arr.get(13, key), None);
            let key = &lit(3i64);
            assert_eq!(arr.get(13, key), Some((lit("z"), 3 /* ts */, 2 /* diff */)));
            assert_eq!(arr.expire_state.as_ref().unwrap().event_ts_to_key.len(), 1);
        }
    }

    #[test]
    fn test_apply_expired_keys() {
        // apply updates with a expired key
        let mut arr = Arrangement::default();
        let expire_state = KeyExpiryManager {
            event_ts_to_key: Default::default(),
            key_expiration_duration: Some(10),
            event_timestamp_from_row: Some(ScalarExpr::Column(0)),
        };
        arr.expire_state = Some(expire_state);

        let arr = ArrangeHandler::from(arr);

        let updates: Vec<KeyValDiffRow> = vec![
            (kv(lit(1i64), lit("x")), 1 /* ts */, 1 /* diff */),
            (kv(lit(2i64), lit("y")), 2 /* ts */, 1 /* diff */),
        ];
        {
            let mut arr = arr.write();
            let expired_by = arr.apply_updates(12, updates).unwrap();
            assert_eq!(expired_by, Some(1));

            let key = &lit(1i64);
            assert_eq!(arr.get(12, key), None);
            let key = &lit(2i64);
            assert_eq!(arr.get(12, key), Some((lit("y"), 2 /* ts */, 1 /* diff */)));
        }
    }

    /// test if split_spine_le get ranges that are not aligned with batch boundaries
    /// this split_spine_le can correctly retrieve all updates in the range, including updates that are in the batches
    /// near the boundary of input range
    #[test]
    fn test_split_off() {
        let mut arr = Arrangement::default();
        // manually create batch ..=1 and 2..=3
        arr.spine.insert(1, Batch::default());
        arr.spine.insert(3, Batch::default());

        let updates = vec![(kv(lit("a"), lit("x")), 2 /* ts */, 1 /* diff */)];
        // updates falls into the range of 2..=3
        arr.apply_updates(2, updates).unwrap();

        let mut arr1 = arr.clone();
        {
            assert_eq!(arr.get_next_update_time(&1), Some(2));
            // split expect to take batch ..=1 and create a new batch 2..=2 (which contains update)
            let split = &arr.split_spine_le(&2);
            assert_eq!(split.len(), 2);
            assert_eq!(split[&2].len(), 1);

            assert_eq!(arr.get_next_update_time(&1), None);
        }

        {
            // take all updates with timestamp <=1, will get no updates
            let split = &arr1.split_spine_le(&1);
            assert_eq!(split.len(), 1);
            assert_eq!(split[&1].len(), 0);
        }
    }

    /// test if get ranges is not aligned with boundary of batch,
    /// whether can get correct result
    #[test]
    fn test_get_by_range() {
        let mut arr = Arrangement::default();

        // will form {2: [2, 1], 4: [4,3], 6: [6,5]} three batch
        // TODO(discord9): manually set batch
        let updates: Vec<KeyValDiffRow> = vec![
            (kv(lit("a"), lit("")), 2 /* ts */, 1 /* diff */),
            (kv(lit("a"), lit("")), 1 /* ts */, 1 /* diff */),
            (kv(lit("b"), lit("")), 4 /* ts */, 1 /* diff */),
            (kv(lit("c"), lit("")), 3 /* ts */, 1 /* diff */),
            (kv(lit("c"), lit("")), 6 /* ts */, 1 /* diff */),
            (kv(lit("a"), lit("")), 5 /* ts */, 1 /* diff */),
        ];
        arr.apply_updates(0, updates).unwrap();
        assert_eq!(
            arr.get_updates_in_range(2..=5),
            vec![
                (kv(lit("a"), lit("")), 2 /* ts */, 1 /* diff */),
                (kv(lit("b"), lit("")), 4 /* ts */, 1 /* diff */),
                (kv(lit("c"), lit("")), 3 /* ts */, 1 /* diff */),
                (kv(lit("a"), lit("")), 5 /* ts */, 1 /* diff */),
            ]
        );
    }

    /// test if get with range unaligned with batch boundary
    /// can get correct result
    #[test]
    fn test_get_unaligned() {
        let mut arr = Arrangement::default();

        // will form {2: [2, 1], 4: [4,3], 6: [6,5]} three batch
        // TODO(discord9): manually set batch
        let key = &lit("a");
        let updates: Vec<KeyValDiffRow> = vec![
            (kv(key, lit(1)), 2 /* ts */, 1 /* diff */),
            (kv(key, lit(2)), 1 /* ts */, 1 /* diff */),
            (kv(key, lit(3)), 4 /* ts */, 1 /* diff */),
            (kv(key, lit(4)), 3 /* ts */, 1 /* diff */),
            (kv(key, lit(5)), 6 /* ts */, 1 /* diff */),
            (kv(key, lit(6)), 5 /* ts */, 1 /* diff */),
        ];
        arr.apply_updates(0, updates).unwrap();
        // aligned with batch boundary
        assert_eq!(arr.get(2, key), Some((lit(1), 2 /* ts */, 1 /* diff */)));
        // unaligned with batch boundary
        assert_eq!(arr.get(3, key), Some((lit(4), 3 /* ts */, 1 /* diff */)));
    }

    /// test if out of order updates can be sorted correctly
    #[test]
    fn test_out_of_order_apply_updates() {
        let mut arr = Arrangement::default();

        let key = &lit("a");
        let updates: Vec<KeyValDiffRow> = vec![
            (kv(key, lit(5)), 6 /* ts */, 1 /* diff */),
            (kv(key, lit(2)), 2 /* ts */, -1 /* diff */),
            (kv(key, lit(1)), 2 /* ts */, 1 /* diff */),
            (kv(key, lit(2)), 1 /* ts */, 1 /* diff */),
            (kv(key, lit(3)), 4 /* ts */, 1 /* diff */),
            (kv(key, lit(4)), 3 /* ts */, 1 /* diff */),
            (kv(key, lit(6)), 5 /* ts */, 1 /* diff */),
        ];
        arr.apply_updates(0, updates.clone()).unwrap();
        let sorted = updates
            .iter()
            .sorted_by_key(|(_, ts, _)| *ts)
            .cloned()
            .collect_vec();
        assert_eq!(arr.get_updates_in_range(1..7), sorted);
    }

    #[test]
    fn test_full_arrangement_get_from_first_entry() {
        let mut arr = Arrangement::default();
        // will form {3: [1, 2, 3]}
        let updates = vec![
            (kv(lit("a"), lit("x")), 3 /* ts */, 1 /* diff */),
            (kv(lit("b"), lit("y")), 1 /* ts */, 1 /* diff */),
            (kv(lit("b"), lit("y")), 2 /* ts */, -1 /* diff */),
        ];
        arr.apply_updates(0, updates).unwrap();
        assert_eq!(arr.get(2, &lit("b")), None /* deleted */);
        arr.full_arrangement = true;
        assert_eq!(arr.get(2, &lit("b")), None /* still deleted */);

        arr.compact_to(1).unwrap();

        assert_eq!(
            arr.get(1, &lit("b")),
            Some((lit("y"), 1, 1)) /* fast path */
        );
    }
}