flow/transform/
expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![warn(unused_imports)]

use std::sync::Arc;

use common_error::ext::BoxedError;
use common_telemetry::debug;
use datafusion::execution::SessionStateBuilder;
use datafusion::functions::all_default_functions;
use datafusion_physical_expr::PhysicalExpr;
use datatypes::data_type::ConcreteDataType as CDT;
use snafu::{ensure, OptionExt, ResultExt};
use substrait_proto::proto::expression::field_reference::ReferenceType::DirectReference;
use substrait_proto::proto::expression::reference_segment::ReferenceType::StructField;
use substrait_proto::proto::expression::{IfThen, RexType, ScalarFunction};
use substrait_proto::proto::function_argument::ArgType;
use substrait_proto::proto::Expression;

use crate::error::{
    DatafusionSnafu, DatatypesSnafu, Error, EvalSnafu, ExternalSnafu, InvalidQuerySnafu,
    NotImplementedSnafu, PlanSnafu, UnexpectedSnafu,
};
use crate::expr::{
    BinaryFunc, DfScalarFunction, RawDfScalarFn, ScalarExpr, TypedExpr, UnaryFunc,
    UnmaterializableFunc, VariadicFunc, TUMBLE_END, TUMBLE_START,
};
use crate::repr::{ColumnType, RelationDesc, RelationType};
use crate::transform::literal::{
    from_substrait_literal, from_substrait_type, to_substrait_literal,
};
use crate::transform::{substrait_proto, FunctionExtensions};

// TODO(discord9): refactor plan to substrait convert of `arrow_cast` function thus remove this function
/// ref to `arrow_schema::datatype` for type name
fn typename_to_cdt(name: &str) -> Result<CDT, Error> {
    let ret = match name {
        "Int8" => CDT::int8_datatype(),
        "Int16" => CDT::int16_datatype(),
        "Int32" => CDT::int32_datatype(),
        "Int64" => CDT::int64_datatype(),
        "UInt8" => CDT::uint8_datatype(),
        "UInt16" => CDT::uint16_datatype(),
        "UInt32" => CDT::uint32_datatype(),
        "UInt64" => CDT::uint64_datatype(),
        "Float32" => CDT::float32_datatype(),
        "Float64" => CDT::float64_datatype(),
        "Boolean" => CDT::boolean_datatype(),
        "String" => CDT::string_datatype(),
        "Date" | "Date32" | "Date64" => CDT::date_datatype(),
        "Timestamp" => CDT::timestamp_second_datatype(),
        "Timestamp(Second, None)" => CDT::timestamp_second_datatype(),
        "Timestamp(Millisecond, None)" => CDT::timestamp_millisecond_datatype(),
        "Timestamp(Microsecond, None)" => CDT::timestamp_microsecond_datatype(),
        "Timestamp(Nanosecond, None)" => CDT::timestamp_nanosecond_datatype(),
        "Time32(Second)" | "Time64(Second)" => CDT::time_second_datatype(),
        "Time32(Millisecond)" | "Time64(Millisecond)" => CDT::time_millisecond_datatype(),
        "Time32(Microsecond)" | "Time64(Microsecond)" => CDT::time_microsecond_datatype(),
        "Time32(Nanosecond)" | "Time64(Nanosecond)" => CDT::time_nanosecond_datatype(),
        _ => NotImplementedSnafu {
            reason: format!("Unrecognized typename: {}", name),
        }
        .fail()?,
    };
    Ok(ret)
}

/// Convert [`ScalarFunction`] to corresponding Datafusion's [`PhysicalExpr`]
pub(crate) async fn from_scalar_fn_to_df_fn_impl(
    f: &ScalarFunction,
    input_schema: &RelationDesc,
    extensions: &FunctionExtensions,
) -> Result<Arc<dyn PhysicalExpr>, Error> {
    let e = Expression {
        rex_type: Some(RexType::ScalarFunction(f.clone())),
    };
    let schema = input_schema.to_df_schema()?;

    let df_expr = substrait::df_logical_plan::consumer::from_substrait_rex(
        &SessionStateBuilder::new()
            .with_scalar_functions(all_default_functions())
            .build(),
        &e,
        &schema,
        &extensions.to_extensions(),
    )
    .await;
    let expr = df_expr.context({
        DatafusionSnafu {
            context: "Failed to convert substrait scalar function to datafusion scalar function",
        }
    })?;
    let phy_expr =
        datafusion::physical_expr::create_physical_expr(&expr, &schema, &Default::default())
            .context(DatafusionSnafu {
                context: "Failed to create physical expression from logical expression",
            })?;
    Ok(phy_expr)
}

/// Return an [`Expression`](wrapped in a [`FunctionArgument`]) that references the i-th column of the input relation
pub(crate) fn proto_col(i: usize) -> substrait_proto::proto::FunctionArgument {
    use substrait_proto::proto::expression;
    let expr = Expression {
        rex_type: Some(expression::RexType::Selection(Box::new(
            expression::FieldReference {
                reference_type: Some(expression::field_reference::ReferenceType::DirectReference(
                    expression::ReferenceSegment {
                        reference_type: Some(
                            expression::reference_segment::ReferenceType::StructField(Box::new(
                                expression::reference_segment::StructField {
                                    field: i as i32,
                                    child: None,
                                },
                            )),
                        ),
                    },
                )),
                root_type: None,
            },
        ))),
    };
    substrait_proto::proto::FunctionArgument {
        arg_type: Some(substrait_proto::proto::function_argument::ArgType::Value(
            expr,
        )),
    }
}

fn is_proto_literal(arg: &substrait_proto::proto::FunctionArgument) -> bool {
    use substrait_proto::proto::expression;
    matches!(
        arg.arg_type.as_ref().unwrap(),
        ArgType::Value(Expression {
            rex_type: Some(expression::RexType::Literal(_)),
        })
    )
}

fn build_proto_lit(
    lit: substrait_proto::proto::expression::Literal,
) -> substrait_proto::proto::FunctionArgument {
    use substrait_proto::proto;
    proto::FunctionArgument {
        arg_type: Some(ArgType::Value(Expression {
            rex_type: Some(proto::expression::RexType::Literal(lit)),
        })),
    }
}

/// rewrite ScalarFunction's arguments to Columns 0..n so nested exprs are still handled by us instead of datafusion
///
/// specially, if a argument is a literal, the replacement will not happen
fn rewrite_scalar_function(
    f: &ScalarFunction,
    arg_typed_exprs: &[TypedExpr],
) -> Result<ScalarFunction, Error> {
    let mut f_rewrite = f.clone();
    ensure!(
        f_rewrite.arguments.len() == arg_typed_exprs.len(),
        crate::error::InternalSnafu {
            reason: format!(
                "Expect `f_rewrite` and `arg_typed_expr` to be same length, found {} and {}",
                f_rewrite.arguments.len(),
                arg_typed_exprs.len()
            )
        }
    );
    for (idx, raw_expr) in f_rewrite.arguments.iter_mut().enumerate() {
        // only replace it with col(idx) if it is not literal
        // will try best to determine if it is literal, i.e. for function like `cast(<literal>)` will try
        // in both world to understand if it results in a literal
        match (
            is_proto_literal(raw_expr),
            arg_typed_exprs[idx].expr.is_literal(),
        ) {
            (false, false) => *raw_expr = proto_col(idx),
            (true, _) => (),
            (false, true) => {
                if let ScalarExpr::Literal(val, ty) = &arg_typed_exprs[idx].expr {
                    let df_val = val
                        .try_to_scalar_value(ty)
                        .map_err(BoxedError::new)
                        .context(ExternalSnafu)?;
                    let lit_sub = to_substrait_literal(&df_val)?;
                    // put const-folded literal back to df to simplify stuff
                    *raw_expr = build_proto_lit(lit_sub);
                } else {
                    UnexpectedSnafu {
                        reason: format!(
                            "Expect value to be literal, but found {:?}",
                            arg_typed_exprs[idx].expr
                        ),
                    }
                    .fail()?
                }
            }
        }
    }
    Ok(f_rewrite)
}

impl TypedExpr {
    pub async fn from_substrait_to_datafusion_scalar_func(
        f: &ScalarFunction,
        arg_typed_exprs: Vec<TypedExpr>,
        extensions: &FunctionExtensions,
    ) -> Result<TypedExpr, Error> {
        let (arg_exprs, arg_types): (Vec<_>, Vec<_>) = arg_typed_exprs
            .clone()
            .into_iter()
            .map(|e| (e.expr, e.typ))
            .unzip();
        debug!("Before rewrite: {:?}", f);
        let f_rewrite = rewrite_scalar_function(f, &arg_typed_exprs)?;
        debug!("After rewrite: {:?}", f_rewrite);
        let input_schema = RelationType::new(arg_types).into_unnamed();
        let raw_fn =
            RawDfScalarFn::from_proto(&f_rewrite, input_schema.clone(), extensions.clone())?;

        let df_func = DfScalarFunction::try_from_raw_fn(raw_fn).await?;
        let expr = ScalarExpr::CallDf {
            df_scalar_fn: df_func,
            exprs: arg_exprs,
        };
        // df already know it's own schema, so not providing here
        let ret_type = expr.typ(&[])?;
        Ok(TypedExpr::new(expr, ret_type))
    }

    /// Convert ScalarFunction into Flow's ScalarExpr
    pub async fn from_substrait_scalar_func(
        f: &ScalarFunction,
        input_schema: &RelationDesc,
        extensions: &FunctionExtensions,
    ) -> Result<TypedExpr, Error> {
        let fn_name =
            extensions
                .get(&f.function_reference)
                .with_context(|| NotImplementedSnafu {
                    reason: format!(
                        "Aggregated function not found: function reference = {:?}",
                        f.function_reference
                    ),
                })?;
        let arg_len = f.arguments.len();
        let arg_typed_exprs: Vec<TypedExpr> = {
            let mut rets = Vec::new();
            for arg in f.arguments.iter() {
                let ret = match &arg.arg_type {
                    Some(ArgType::Value(e)) => {
                        TypedExpr::from_substrait_rex(e, input_schema, extensions).await
                    }
                    _ => not_impl_err!("Aggregated function argument non-Value type not supported"),
                }?;
                rets.push(ret);
            }
            rets
        };

        // literal's type is determined by the function and type of other args
        let (arg_exprs, arg_types): (Vec<_>, Vec<_>) = arg_typed_exprs
            .clone()
            .into_iter()
            .map(
                |TypedExpr {
                     expr: arg_val,
                     typ: arg_type,
                 }| {
                    if arg_val.is_literal() {
                        (arg_val, None)
                    } else {
                        (arg_val, Some(arg_type.scalar_type))
                    }
                },
            )
            .unzip();

        match arg_len {
            1 if UnaryFunc::is_valid_func_name(fn_name) => {
                let func = UnaryFunc::from_str_and_type(fn_name, None)?;
                let arg = arg_exprs[0].clone();
                let ret_type = ColumnType::new_nullable(func.signature().output.clone());

                Ok(TypedExpr::new(arg.call_unary(func), ret_type))
            }
            2 if fn_name == "arrow_cast" => {
                let cast_to = arg_exprs[1]
                    .clone()
                    .as_literal()
                    .and_then(|lit| lit.as_string())
                    .with_context(|| InvalidQuerySnafu {
                        reason: "array_cast's second argument must be a literal string",
                    })?;
                let cast_to = typename_to_cdt(&cast_to)?;
                let func = UnaryFunc::Cast(cast_to.clone());
                let arg = arg_exprs[0].clone();
                // constant folding here since some datafusion function require it for constant arg(i.e. `DATE_BIN`)
                if arg.is_literal() {
                    let res = func.eval(&[], &arg).context(EvalSnafu)?;
                    Ok(TypedExpr::new(
                        ScalarExpr::Literal(res, cast_to.clone()),
                        ColumnType::new_nullable(cast_to),
                    ))
                } else {
                    let ret_type = ColumnType::new_nullable(func.signature().output.clone());

                    Ok(TypedExpr::new(arg.call_unary(func), ret_type))
                }
            }
            2 if BinaryFunc::is_valid_func_name(fn_name) => {
                let (func, signature) =
                    BinaryFunc::from_str_expr_and_type(fn_name, &arg_exprs, &arg_types[0..2])?;

                // constant folding here
                let is_all_literal = arg_exprs.iter().all(|arg| arg.is_literal());
                if is_all_literal {
                    let res = func
                        .eval(&[], &arg_exprs[0], &arg_exprs[1])
                        .context(EvalSnafu)?;

                    // if output type is null, it should be inferred from the input types
                    let con_typ = signature.output.clone();
                    let typ = ColumnType::new_nullable(con_typ.clone());
                    return Ok(TypedExpr::new(ScalarExpr::Literal(res, con_typ), typ));
                }

                let mut arg_exprs = arg_exprs;
                for (idx, arg_expr) in arg_exprs.iter_mut().enumerate() {
                    if let ScalarExpr::Literal(val, typ) = arg_expr {
                        let dest_type = signature.input[idx].clone();

                        // cast val to target_type
                        let dest_val = if !dest_type.is_null() {
                            datatypes::types::cast(val.clone(), &dest_type)
                        .with_context(|_|
                            DatatypesSnafu{
                                extra: format!("Failed to implicitly cast literal {val:?} to type {dest_type:?}")
                            })?
                        } else {
                            val.clone()
                        };
                        *val = dest_val;
                        *typ = dest_type;
                    }
                }

                let ret_type = ColumnType::new_nullable(func.signature().output.clone());
                let ret_expr = arg_exprs[0].clone().call_binary(arg_exprs[1].clone(), func);
                Ok(TypedExpr::new(ret_expr, ret_type))
            }
            _var => {
                if fn_name == TUMBLE_START || fn_name == TUMBLE_END {
                    let (func, arg) = UnaryFunc::from_tumble_func(fn_name, &arg_typed_exprs)?;

                    let ret_type = ColumnType::new_nullable(func.signature().output.clone());

                    Ok(TypedExpr::new(arg.expr.call_unary(func), ret_type))
                } else if VariadicFunc::is_valid_func_name(fn_name) {
                    let func = VariadicFunc::from_str_and_types(fn_name, &arg_types)?;
                    let ret_type = ColumnType::new_nullable(func.signature().output.clone());
                    let mut expr = ScalarExpr::CallVariadic {
                        func,
                        exprs: arg_exprs,
                    };
                    expr.optimize();
                    Ok(TypedExpr::new(expr, ret_type))
                } else if UnmaterializableFunc::is_valid_func_name(fn_name) {
                    let func = UnmaterializableFunc::from_str_args(fn_name, arg_typed_exprs)?;
                    let ret_type = ColumnType::new_nullable(func.signature().output.clone());
                    Ok(TypedExpr::new(
                        ScalarExpr::CallUnmaterializable(func),
                        ret_type,
                    ))
                } else {
                    let try_as_df = Self::from_substrait_to_datafusion_scalar_func(
                        f,
                        arg_typed_exprs,
                        extensions,
                    )
                    .await?;
                    Ok(try_as_df)
                }
            }
        }
    }

    /// Convert IfThen into Flow's ScalarExpr
    pub async fn from_substrait_ifthen_rex(
        if_then: &IfThen,
        input_schema: &RelationDesc,
        extensions: &FunctionExtensions,
    ) -> Result<TypedExpr, Error> {
        let ifs: Vec<_> = {
            let mut ifs = Vec::new();
            for if_clause in if_then.ifs.iter() {
                let proto_if = if_clause.r#if.as_ref().with_context(|| InvalidQuerySnafu {
                    reason: "IfThen clause without if",
                })?;
                let proto_then = if_clause.then.as_ref().with_context(|| InvalidQuerySnafu {
                    reason: "IfThen clause without then",
                })?;
                let cond =
                    TypedExpr::from_substrait_rex(proto_if, input_schema, extensions).await?;
                let then =
                    TypedExpr::from_substrait_rex(proto_then, input_schema, extensions).await?;
                ifs.push((cond, then));
            }
            ifs
        };
        // if no else is presented
        let els = match if_then
            .r#else
            .as_ref()
            .map(|e| TypedExpr::from_substrait_rex(e, input_schema, extensions))
        {
            Some(fut) => Some(fut.await),
            None => None,
        }
        .transpose()?
        .unwrap_or_else(|| {
            TypedExpr::new(
                ScalarExpr::literal_null(),
                ColumnType::new_nullable(CDT::null_datatype()),
            )
        });

        fn build_if_then_recur(
            mut next_if_then: impl Iterator<Item = (TypedExpr, TypedExpr)>,
            els: TypedExpr,
        ) -> TypedExpr {
            if let Some((cond, then)) = next_if_then.next() {
                // always assume the type of `if`` expr is the same with the `then`` expr
                TypedExpr::new(
                    ScalarExpr::If {
                        cond: Box::new(cond.expr),
                        then: Box::new(then.expr),
                        els: Box::new(build_if_then_recur(next_if_then, els).expr),
                    },
                    then.typ,
                )
            } else {
                els
            }
        }
        let expr_if = build_if_then_recur(ifs.into_iter(), els);
        Ok(expr_if)
    }
    /// Convert Substrait Rex into Flow's ScalarExpr
    #[async_recursion::async_recursion]
    pub async fn from_substrait_rex(
        e: &Expression,
        input_schema: &RelationDesc,
        extensions: &FunctionExtensions,
    ) -> Result<TypedExpr, Error> {
        match &e.rex_type {
            Some(RexType::Literal(lit)) => {
                let lit = from_substrait_literal(lit)?;
                Ok(TypedExpr::new(
                    ScalarExpr::Literal(lit.0, lit.1.clone()),
                    ColumnType::new_nullable(lit.1),
                ))
            }
            Some(RexType::SingularOrList(s)) => {
                let substrait_expr = s.value.as_ref().with_context(|| InvalidQuerySnafu {
                    reason: "SingularOrList expression without value",
                })?;
                // Note that we didn't impl support to in list expr
                if !s.options.is_empty() {
                    return not_impl_err!("In list expression is not supported");
                }
                TypedExpr::from_substrait_rex(substrait_expr, input_schema, extensions).await
            }
            Some(RexType::Selection(field_ref)) => match &field_ref.reference_type {
                Some(DirectReference(direct)) => match &direct.reference_type.as_ref() {
                    Some(StructField(x)) => match &x.child.as_ref() {
                        Some(_) => {
                            not_impl_err!(
                                "Direct reference StructField with child is not supported"
                            )
                        }
                        None => {
                            let column = x.field as usize;
                            let column_type = input_schema.typ().column_types[column].clone();
                            Ok(TypedExpr::new(ScalarExpr::Column(column), column_type))
                        }
                    },
                    _ => not_impl_err!(
                        "Direct reference with types other than StructField is not supported"
                    ),
                },
                _ => not_impl_err!("unsupported field ref type"),
            },
            Some(RexType::ScalarFunction(f)) => {
                TypedExpr::from_substrait_scalar_func(f, input_schema, extensions).await
            }
            Some(RexType::IfThen(if_then)) => {
                TypedExpr::from_substrait_ifthen_rex(if_then, input_schema, extensions).await
            }
            Some(RexType::Cast(cast)) => {
                let input = cast.input.as_ref().with_context(|| InvalidQuerySnafu {
                    reason: "Cast expression without input",
                })?;
                let input = TypedExpr::from_substrait_rex(input, input_schema, extensions).await?;
                let cast_type = from_substrait_type(cast.r#type.as_ref().with_context(|| {
                    InvalidQuerySnafu {
                        reason: "Cast expression without type",
                    }
                })?)?;
                let func = UnaryFunc::from_str_and_type("cast", Some(cast_type.clone()))?;
                Ok(TypedExpr::new(
                    input.expr.call_unary(func),
                    ColumnType::new_nullable(cast_type),
                ))
            }
            Some(RexType::WindowFunction(_)) => PlanSnafu {
                reason:
                    "Window function is not supported yet. Please use aggregation function instead."
                        .to_string(),
            }
            .fail(),
            _ => not_impl_err!("unsupported rex_type"),
        }
    }
}

#[cfg(test)]
mod test {
    use datatypes::prelude::ConcreteDataType;
    use datatypes::value::Value;
    use pretty_assertions::assert_eq;

    use super::*;
    use crate::expr::{GlobalId, MapFilterProject};
    use crate::plan::{Plan, TypedPlan};
    use crate::repr::{self, ColumnType, RelationType};
    use crate::transform::test::{create_test_ctx, create_test_query_engine, sql_to_substrait};

    /// test if `WHERE` condition can be converted to Flow's ScalarExpr in mfp's filter
    #[tokio::test]
    async fn test_where_and() {
        let engine = create_test_query_engine();
        let sql =
            "SELECT number FROM numbers_with_ts WHERE number >= 1 AND number <= 3 AND number!=2";
        let plan = sql_to_substrait(engine.clone(), sql).await;

        let mut ctx = create_test_ctx();
        let flow_plan = TypedPlan::from_substrait_plan(&mut ctx, &plan).await;

        // optimize binary and to variadic and
        let filter = ScalarExpr::CallVariadic {
            func: VariadicFunc::And,
            exprs: vec![
                ScalarExpr::Column(2).call_binary(
                    ScalarExpr::Literal(Value::from(1i64), CDT::int64_datatype()),
                    BinaryFunc::Gte,
                ),
                ScalarExpr::Column(2).call_binary(
                    ScalarExpr::Literal(Value::from(3i64), CDT::int64_datatype()),
                    BinaryFunc::Lte,
                ),
                ScalarExpr::Column(2).call_binary(
                    ScalarExpr::Literal(Value::from(2i64), CDT::int64_datatype()),
                    BinaryFunc::NotEq,
                ),
            ],
        };
        let expected = TypedPlan {
            schema: RelationType::new(vec![ColumnType::new(CDT::uint32_datatype(), false)])
                .into_named(vec![Some("number".to_string())]),
            plan: Plan::Mfp {
                input: Box::new(
                    Plan::Get {
                        id: crate::expr::Id::Global(GlobalId::User(1)),
                    }
                    .with_types(
                        RelationType::new(vec![
                            ColumnType::new(ConcreteDataType::uint32_datatype(), false),
                            ColumnType::new(
                                ConcreteDataType::timestamp_millisecond_datatype(),
                                false,
                            ),
                        ])
                        .into_named(vec![Some("number".to_string()), Some("ts".to_string())]),
                    ),
                ),
                mfp: MapFilterProject::new(2)
                    .map(vec![
                        ScalarExpr::CallUnary {
                            func: UnaryFunc::Cast(CDT::int64_datatype()),
                            expr: Box::new(ScalarExpr::Column(0)),
                        },
                        ScalarExpr::Column(0),
                        ScalarExpr::Column(3),
                    ])
                    .unwrap()
                    .filter(vec![filter])
                    .unwrap()
                    .project(vec![4])
                    .unwrap(),
            },
        };
        assert_eq!(flow_plan.unwrap(), expected);
    }

    /// case: binary functions&constant folding can happen in converting substrait plan
    #[tokio::test]
    async fn test_binary_func_and_constant_folding() {
        let engine = create_test_query_engine();
        let sql = "SELECT 1+1*2-1/1+1%2==3 FROM numbers";
        let plan = sql_to_substrait(engine.clone(), sql).await;

        let mut ctx = create_test_ctx();
        let flow_plan = TypedPlan::from_substrait_plan(&mut ctx, &plan).await;

        let expected = TypedPlan {
            schema: RelationType::new(vec![ColumnType::new(CDT::boolean_datatype(), true)])
                .into_named(vec![Some("Int64(1) + Int64(1) * Int64(2) - Int64(1) / Int64(1) + Int64(1) % Int64(2) = Int64(3)".to_string())]),
            plan: Plan::Constant {
                rows: vec![(
                    repr::Row::new(vec![Value::from(true)]),
                    repr::Timestamp::MIN,
                    1,
                )],
            },
        };

        assert_eq!(flow_plan.unwrap(), expected);
    }

    /// test if the type of the literal is correctly inferred, i.e. in here literal is decoded to be int64, but need to be uint32,
    #[tokio::test]
    async fn test_implicitly_cast() {
        let engine = create_test_query_engine();
        let sql = "SELECT number+1 FROM numbers";
        let plan = sql_to_substrait(engine.clone(), sql).await;

        let mut ctx = create_test_ctx();
        let flow_plan = TypedPlan::from_substrait_plan(&mut ctx, &plan).await;

        let expected = TypedPlan {
            schema: RelationType::new(vec![ColumnType::new(CDT::int64_datatype(), true)])
                .into_named(vec![Some("numbers.number + Int64(1)".to_string())]),
            plan: Plan::Mfp {
                input: Box::new(
                    Plan::Get {
                        id: crate::expr::Id::Global(GlobalId::User(0)),
                    }
                    .with_types(
                        RelationType::new(vec![ColumnType::new(
                            ConcreteDataType::uint32_datatype(),
                            false,
                        )])
                        .into_named(vec![Some("number".to_string())]),
                    ),
                ),
                mfp: MapFilterProject::new(1)
                    .map(vec![ScalarExpr::Column(0)
                        .call_unary(UnaryFunc::Cast(CDT::int64_datatype()))
                        .call_binary(
                            ScalarExpr::Literal(Value::from(1i64), CDT::int64_datatype()),
                            BinaryFunc::AddInt64,
                        )])
                    .unwrap()
                    .project(vec![1])
                    .unwrap(),
            },
        };
        assert_eq!(flow_plan.unwrap(), expected);
    }

    #[tokio::test]
    async fn test_cast() {
        let engine = create_test_query_engine();
        let sql = "SELECT CAST(1 AS INT16) FROM numbers";
        let plan = sql_to_substrait(engine.clone(), sql).await;

        let mut ctx = create_test_ctx();
        let flow_plan = TypedPlan::from_substrait_plan(&mut ctx, &plan).await;

        let expected = TypedPlan {
            schema: RelationType::new(vec![ColumnType::new(CDT::int16_datatype(), true)])
                .into_named(vec![Some(
                    "arrow_cast(Int64(1),Utf8(\"Int16\"))".to_string(),
                )]),
            plan: Plan::Constant {
                // cast of literal is constant folded
                rows: vec![(repr::Row::new(vec![Value::from(1i16)]), i64::MIN, 1)],
            },
        };
        assert_eq!(flow_plan.unwrap(), expected);
    }

    #[tokio::test]
    async fn test_select_add() {
        let engine = create_test_query_engine();
        let sql = "SELECT number+number FROM numbers";
        let plan = sql_to_substrait(engine.clone(), sql).await;

        let mut ctx = create_test_ctx();
        let flow_plan = TypedPlan::from_substrait_plan(&mut ctx, &plan).await;

        let expected = TypedPlan {
            schema: RelationType::new(vec![ColumnType::new(CDT::uint32_datatype(), true)])
                .into_named(vec![Some("numbers.number + numbers.number".to_string())]),
            plan: Plan::Mfp {
                input: Box::new(
                    Plan::Get {
                        id: crate::expr::Id::Global(GlobalId::User(0)),
                    }
                    .with_types(
                        RelationType::new(vec![ColumnType::new(
                            ConcreteDataType::uint32_datatype(),
                            false,
                        )])
                        .into_named(vec![Some("number".to_string())]),
                    ),
                ),
                mfp: MapFilterProject::new(1)
                    .map(vec![ScalarExpr::Column(0)
                        .call_binary(ScalarExpr::Column(0), BinaryFunc::AddUInt32)])
                    .unwrap()
                    .project(vec![1])
                    .unwrap(),
            },
        };

        assert_eq!(flow_plan.unwrap(), expected);
    }

    #[tokio::test]
    async fn test_func_sig() {
        fn lit(v: impl ToString) -> substrait_proto::proto::FunctionArgument {
            use substrait_proto::proto::expression;
            let expr = Expression {
                rex_type: Some(expression::RexType::Literal(expression::Literal {
                    nullable: false,
                    type_variation_reference: 0,
                    literal_type: Some(expression::literal::LiteralType::String(v.to_string())),
                })),
            };
            substrait_proto::proto::FunctionArgument {
                arg_type: Some(substrait_proto::proto::function_argument::ArgType::Value(
                    expr,
                )),
            }
        }

        let f = substrait_proto::proto::expression::ScalarFunction {
            function_reference: 0,
            arguments: vec![proto_col(0)],
            options: vec![],
            output_type: None,
            ..Default::default()
        };
        let input_schema =
            RelationType::new(vec![ColumnType::new(CDT::uint32_datatype(), false)]).into_unnamed();
        let extensions = FunctionExtensions::from_iter([(0, "is_null".to_string())]);
        let res = TypedExpr::from_substrait_scalar_func(&f, &input_schema, &extensions)
            .await
            .unwrap();

        assert_eq!(
            res,
            TypedExpr {
                expr: ScalarExpr::Column(0).call_unary(UnaryFunc::IsNull),
                typ: ColumnType {
                    scalar_type: CDT::boolean_datatype(),
                    nullable: true,
                },
            }
        );

        let f = substrait_proto::proto::expression::ScalarFunction {
            function_reference: 0,
            arguments: vec![proto_col(0), proto_col(1)],
            options: vec![],
            output_type: None,
            ..Default::default()
        };
        let input_schema = RelationType::new(vec![
            ColumnType::new(CDT::uint32_datatype(), false),
            ColumnType::new(CDT::uint32_datatype(), false),
        ])
        .into_unnamed();
        let extensions = FunctionExtensions::from_iter([(0, "add".to_string())]);
        let res = TypedExpr::from_substrait_scalar_func(&f, &input_schema, &extensions)
            .await
            .unwrap();

        assert_eq!(
            res,
            TypedExpr {
                expr: ScalarExpr::Column(0)
                    .call_binary(ScalarExpr::Column(1), BinaryFunc::AddUInt32,),
                typ: ColumnType {
                    scalar_type: CDT::uint32_datatype(),
                    nullable: true,
                },
            }
        );
    }
}