1use std::collections::BTreeMap;
17use std::sync::Arc;
18
19use common_error::ext::BoxedError;
20use common_function::function::FunctionContext;
21use datafusion_substrait::extensions::Extensions;
22use datatypes::data_type::ConcreteDataType as CDT;
23use query::QueryEngine;
24use serde::{Deserialize, Serialize};
25use snafu::ResultExt;
26use substrait::substrait_proto_df as substrait_proto;
29use substrait_proto::proto::extensions::simple_extension_declaration::MappingType;
30use substrait_proto::proto::extensions::SimpleExtensionDeclaration;
31
32use crate::adapter::FlownodeContext;
33use crate::error::{Error, NotImplementedSnafu, UnexpectedSnafu};
34use crate::expr::{TUMBLE_END, TUMBLE_START};
35macro_rules! not_impl_err {
37 ($($arg:tt)*) => {
38 NotImplementedSnafu {
39 reason: format!($($arg)*),
40 }.fail()
41 };
42}
43
44macro_rules! plan_err {
46 ($($arg:tt)*) => {
47 PlanSnafu {
48 reason: format!($($arg)*),
49 }.fail()
50 };
51}
52
53mod aggr;
54mod expr;
55mod literal;
56mod plan;
57
58pub(crate) use expr::from_scalar_fn_to_df_fn_impl;
59
60#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq, PartialOrd, Ord, Hash)]
64pub struct FunctionExtensions {
65 anchor_to_name: BTreeMap<u32, String>,
66}
67
68impl FunctionExtensions {
69 pub fn from_iter(inner: impl IntoIterator<Item = (u32, impl ToString)>) -> Self {
70 Self {
71 anchor_to_name: inner.into_iter().map(|(k, s)| (k, s.to_string())).collect(),
72 }
73 }
74
75 pub fn try_from_proto(extensions: &[SimpleExtensionDeclaration]) -> Result<Self, Error> {
77 let mut anchor_to_name = BTreeMap::new();
78 for e in extensions {
79 match &e.mapping_type {
80 Some(ext) => match ext {
81 MappingType::ExtensionFunction(ext_f) => {
82 anchor_to_name.insert(ext_f.function_anchor, ext_f.name.clone());
83 }
84 _ => not_impl_err!("Extension type not supported: {ext:?}")?,
85 },
86 None => not_impl_err!("Cannot parse empty extension")?,
87 }
88 }
89 Ok(Self { anchor_to_name })
90 }
91
92 pub fn get(&self, anchor: &u32) -> Option<&String> {
94 self.anchor_to_name.get(anchor)
95 }
96
97 pub fn to_extensions(&self) -> Extensions {
98 Extensions {
99 functions: self
100 .anchor_to_name
101 .iter()
102 .map(|(k, v)| (*k, v.clone()))
103 .collect(),
104 ..Default::default()
105 }
106 }
107}
108
109pub fn register_function_to_query_engine(engine: &Arc<dyn QueryEngine>) {
111 engine.register_function(Arc::new(TumbleFunction::new("tumble")));
112 engine.register_function(Arc::new(TumbleFunction::new(TUMBLE_START)));
113 engine.register_function(Arc::new(TumbleFunction::new(TUMBLE_END)));
114}
115
116#[derive(Debug)]
117pub struct TumbleFunction {
118 name: String,
119}
120
121impl TumbleFunction {
122 fn new(name: &str) -> Self {
123 Self {
124 name: name.to_string(),
125 }
126 }
127}
128
129impl std::fmt::Display for TumbleFunction {
130 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
131 write!(f, "{}", self.name.to_ascii_uppercase())
132 }
133}
134
135impl common_function::function::Function for TumbleFunction {
136 fn name(&self) -> &str {
137 &self.name
138 }
139
140 fn return_type(&self, _input_types: &[CDT]) -> common_query::error::Result<CDT> {
141 Ok(CDT::timestamp_millisecond_datatype())
142 }
143
144 fn signature(&self) -> common_query::prelude::Signature {
145 common_query::prelude::Signature::variadic_any(common_query::prelude::Volatility::Immutable)
146 }
147
148 fn eval(
149 &self,
150 _func_ctx: &FunctionContext,
151 _columns: &[datatypes::prelude::VectorRef],
152 ) -> common_query::error::Result<datatypes::prelude::VectorRef> {
153 UnexpectedSnafu {
154 reason: "Tumbler function is not implemented for datafusion executor",
155 }
156 .fail()
157 .map_err(BoxedError::new)
158 .context(common_query::error::ExecuteSnafu)
159 }
160}
161
162#[cfg(test)]
163mod test {
164 use std::sync::Arc;
165
166 use catalog::RegisterTableRequest;
167 use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, NUMBERS_TABLE_ID};
168 use datatypes::prelude::*;
169 use datatypes::schema::Schema;
170 use datatypes::timestamp::TimestampMillisecond;
171 use datatypes::vectors::{TimestampMillisecondVectorBuilder, VectorRef};
172 use itertools::Itertools;
173 use prost::Message;
174 use query::options::QueryOptions;
175 use query::parser::QueryLanguageParser;
176 use query::query_engine::DefaultSerializer;
177 use query::QueryEngine;
178 use session::context::QueryContext;
179 use substrait::{DFLogicalSubstraitConvertor, SubstraitPlan};
180 use substrait_proto::proto;
181 use table::table::numbers::{NumbersTable, NUMBERS_TABLE_NAME};
182 use table::test_util::MemTable;
183
184 use super::*;
185 use crate::adapter::node_context::IdToNameMap;
186 use crate::adapter::table_source::test::FlowDummyTableSource;
187 use crate::df_optimizer::apply_df_optimizer;
188 use crate::expr::GlobalId;
189
190 pub fn create_test_ctx() -> FlownodeContext {
191 let mut tri_map = IdToNameMap::new();
192 {
194 let gid = GlobalId::User(0);
195 let name = [
196 "greptime".to_string(),
197 "public".to_string(),
198 "numbers".to_string(),
199 ];
200 tri_map.insert(Some(name.clone()), Some(1024), gid);
201 }
202
203 {
204 let gid = GlobalId::User(1);
205 let name = [
206 "greptime".to_string(),
207 "public".to_string(),
208 "numbers_with_ts".to_string(),
209 ];
210 tri_map.insert(Some(name.clone()), Some(1025), gid);
211 }
212
213 let dummy_source = FlowDummyTableSource::default();
214
215 let mut ctx = FlownodeContext::new(Box::new(dummy_source));
216 ctx.table_repr = tri_map;
217 ctx.query_context = Some(Arc::new(QueryContext::with("greptime", "public")));
218
219 ctx
220 }
221
222 pub fn create_test_query_engine() -> Arc<dyn QueryEngine> {
223 let catalog_list = catalog::memory::new_memory_catalog_manager().unwrap();
224 let req = RegisterTableRequest {
225 catalog: DEFAULT_CATALOG_NAME.to_string(),
226 schema: DEFAULT_SCHEMA_NAME.to_string(),
227 table_name: NUMBERS_TABLE_NAME.to_string(),
228 table_id: NUMBERS_TABLE_ID,
229 table: NumbersTable::table(NUMBERS_TABLE_ID),
230 };
231 catalog_list.register_table_sync(req).unwrap();
232
233 let schema = vec![
234 datatypes::schema::ColumnSchema::new("number", CDT::uint32_datatype(), false),
235 datatypes::schema::ColumnSchema::new(
236 "ts",
237 CDT::timestamp_millisecond_datatype(),
238 false,
239 ),
240 ];
241 let mut columns = vec![];
242 let numbers = (1..=10).collect_vec();
243 let column: VectorRef = Arc::new(<u32 as Scalar>::VectorType::from_vec(numbers));
244 columns.push(column);
245
246 let ts = (1..=10).collect_vec();
247 let mut builder = TimestampMillisecondVectorBuilder::with_capacity(10);
248 ts.into_iter()
249 .map(|v| builder.push(Some(TimestampMillisecond::new(v))))
250 .count();
251 let column: VectorRef = builder.to_vector_cloned();
252 columns.push(column);
253
254 let schema = Arc::new(Schema::new(schema));
255 let recordbatch = common_recordbatch::RecordBatch::new(schema, columns).unwrap();
256 let table = MemTable::table("numbers_with_ts", recordbatch);
257
258 let req_with_ts = RegisterTableRequest {
259 catalog: DEFAULT_CATALOG_NAME.to_string(),
260 schema: DEFAULT_SCHEMA_NAME.to_string(),
261 table_name: "numbers_with_ts".to_string(),
262 table_id: 1024,
263 table,
264 };
265 catalog_list.register_table_sync(req_with_ts).unwrap();
266
267 let factory = query::QueryEngineFactory::new(
268 catalog_list,
269 None,
270 None,
271 None,
272 None,
273 false,
274 QueryOptions::default(),
275 );
276
277 let engine = factory.query_engine();
278 register_function_to_query_engine(&engine);
279
280 assert_eq!("datafusion", engine.name());
281 engine
282 }
283
284 pub async fn sql_to_substrait(engine: Arc<dyn QueryEngine>, sql: &str) -> proto::Plan {
285 let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
287 let plan = engine
288 .planner()
289 .plan(&stmt, QueryContext::arc())
290 .await
291 .unwrap();
292 let plan = apply_df_optimizer(plan).await.unwrap();
293
294 let bytes = DFLogicalSubstraitConvertor {}
296 .encode(&plan, DefaultSerializer)
297 .unwrap();
298
299 proto::Plan::decode(bytes).unwrap()
300 }
301
302 #[tokio::test]
304 async fn test_missing_key_check() {
305 let engine = create_test_query_engine();
306 let sql = "SELECT avg(number) FROM numbers_with_ts GROUP BY tumble(ts, '1 hour'), number";
307
308 let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
309 let plan = engine
310 .planner()
311 .plan(&stmt, QueryContext::arc())
312 .await
313 .unwrap();
314 let plan = apply_df_optimizer(plan).await;
315
316 assert!(plan.is_err());
317 }
318}