1use std::collections::BTreeMap;
17use std::sync::Arc;
18
19use common_function::function::FunctionRef;
20use datafusion::arrow::datatypes::{DataType, TimeUnit};
21use datafusion::logical_expr::ColumnarValue;
22use datafusion_expr::{ScalarFunctionArgs, Signature, Volatility};
23use datafusion_substrait::extensions::Extensions;
24use query::QueryEngine;
25use serde::{Deserialize, Serialize};
26use substrait::substrait_proto_df as substrait_proto;
29use substrait_proto::proto::extensions::SimpleExtensionDeclaration;
30use substrait_proto::proto::extensions::simple_extension_declaration::MappingType;
31
32use crate::adapter::FlownodeContext;
33use crate::error::{Error, NotImplementedSnafu};
34use crate::expr::{TUMBLE_END, TUMBLE_START};
35macro_rules! not_impl_err {
37 ($($arg:tt)*) => {
38 NotImplementedSnafu {
39 reason: format!($($arg)*),
40 }.fail()
41 };
42}
43
44macro_rules! plan_err {
46 ($($arg:tt)*) => {
47 PlanSnafu {
48 reason: format!($($arg)*),
49 }.fail()
50 };
51}
52
53mod aggr;
54mod expr;
55mod literal;
56mod plan;
57
58pub(crate) use expr::from_scalar_fn_to_df_fn_impl;
59
60#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq, PartialOrd, Ord, Hash)]
64pub struct FunctionExtensions {
65 anchor_to_name: BTreeMap<u32, String>,
66}
67
68impl FunctionExtensions {
69 pub fn from_iter(inner: impl IntoIterator<Item = (u32, impl ToString)>) -> Self {
70 Self {
71 anchor_to_name: inner.into_iter().map(|(k, s)| (k, s.to_string())).collect(),
72 }
73 }
74
75 pub fn try_from_proto(extensions: &[SimpleExtensionDeclaration]) -> Result<Self, Error> {
77 let mut anchor_to_name = BTreeMap::new();
78 for e in extensions {
79 match &e.mapping_type {
80 Some(ext) => match ext {
81 MappingType::ExtensionFunction(ext_f) => {
82 anchor_to_name.insert(ext_f.function_anchor, ext_f.name.clone());
83 }
84 _ => not_impl_err!("Extension type not supported: {ext:?}")?,
85 },
86 None => not_impl_err!("Cannot parse empty extension")?,
87 }
88 }
89 Ok(Self { anchor_to_name })
90 }
91
92 pub fn get(&self, anchor: &u32) -> Option<&String> {
94 self.anchor_to_name.get(anchor)
95 }
96
97 pub fn to_extensions(&self) -> Extensions {
98 Extensions {
99 functions: self
100 .anchor_to_name
101 .iter()
102 .map(|(k, v)| (*k, v.clone()))
103 .collect(),
104 ..Default::default()
105 }
106 }
107}
108
109pub fn register_function_to_query_engine(engine: &Arc<dyn QueryEngine>) {
111 let tumble_fn = Arc::new(TumbleFunction::new("tumble")) as FunctionRef;
112 let tumble_start_fn = Arc::new(TumbleFunction::new(TUMBLE_START)) as FunctionRef;
113 let tumble_end_fn = Arc::new(TumbleFunction::new(TUMBLE_END)) as FunctionRef;
114
115 engine.register_scalar_function(tumble_fn.into());
116 engine.register_scalar_function(tumble_start_fn.into());
117 engine.register_scalar_function(tumble_end_fn.into());
118}
119
120#[derive(Debug)]
121pub struct TumbleFunction {
122 name: String,
123 signature: Signature,
124}
125
126impl TumbleFunction {
127 fn new(name: &str) -> Self {
128 Self {
129 name: name.to_string(),
130 signature: Signature::variadic_any(Volatility::Immutable),
131 }
132 }
133}
134
135impl std::fmt::Display for TumbleFunction {
136 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
137 write!(f, "{}", self.name.to_ascii_uppercase())
138 }
139}
140
141impl common_function::function::Function for TumbleFunction {
142 fn name(&self) -> &str {
143 &self.name
144 }
145
146 fn return_type(&self, _: &[DataType]) -> datafusion_common::Result<DataType> {
147 Ok(DataType::Timestamp(TimeUnit::Millisecond, None))
148 }
149
150 fn signature(&self) -> &Signature {
151 &self.signature
152 }
153
154 fn invoke_with_args(&self, _: ScalarFunctionArgs) -> datafusion_common::Result<ColumnarValue> {
155 datafusion_common::not_impl_err!("{}", self.name())
156 }
157}
158
159#[cfg(test)]
160mod test {
161 use std::sync::Arc;
162
163 use catalog::RegisterTableRequest;
164 use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, NUMBERS_TABLE_ID};
165 use datatypes::data_type::ConcreteDataType as CDT;
166 use datatypes::prelude::*;
167 use datatypes::schema::Schema;
168 use datatypes::timestamp::TimestampMillisecond;
169 use datatypes::vectors::{TimestampMillisecondVectorBuilder, VectorRef};
170 use itertools::Itertools;
171 use prost::Message;
172 use query::QueryEngine;
173 use query::options::QueryOptions;
174 use query::parser::QueryLanguageParser;
175 use query::query_engine::DefaultSerializer;
176 use session::context::QueryContext;
177 use substrait::{DFLogicalSubstraitConvertor, SubstraitPlan};
178 use substrait_proto::proto;
179 use table::table::numbers::{NUMBERS_TABLE_NAME, NumbersTable};
180 use table::test_util::MemTable;
181
182 use super::*;
183 use crate::adapter::node_context::IdToNameMap;
184 use crate::adapter::table_source::test::FlowDummyTableSource;
185 use crate::df_optimizer::apply_df_optimizer;
186 use crate::expr::GlobalId;
187
188 pub fn create_test_ctx() -> FlownodeContext {
189 let mut tri_map = IdToNameMap::new();
190 {
192 let gid = GlobalId::User(0);
193 let name = [
194 "greptime".to_string(),
195 "public".to_string(),
196 "numbers".to_string(),
197 ];
198 tri_map.insert(Some(name.clone()), Some(1024), gid);
199 }
200
201 {
202 let gid = GlobalId::User(1);
203 let name = [
204 "greptime".to_string(),
205 "public".to_string(),
206 "numbers_with_ts".to_string(),
207 ];
208 tri_map.insert(Some(name.clone()), Some(1025), gid);
209 }
210
211 let dummy_source = FlowDummyTableSource::default();
212
213 let mut ctx = FlownodeContext::new(Box::new(dummy_source));
214 ctx.table_repr = tri_map;
215 ctx.query_context = Some(Arc::new(QueryContext::with("greptime", "public")));
216
217 ctx
218 }
219
220 pub fn create_test_query_engine() -> Arc<dyn QueryEngine> {
221 let catalog_list = catalog::memory::new_memory_catalog_manager().unwrap();
222 let req = RegisterTableRequest {
223 catalog: DEFAULT_CATALOG_NAME.to_string(),
224 schema: DEFAULT_SCHEMA_NAME.to_string(),
225 table_name: NUMBERS_TABLE_NAME.to_string(),
226 table_id: NUMBERS_TABLE_ID,
227 table: NumbersTable::table(NUMBERS_TABLE_ID),
228 };
229 catalog_list.register_table_sync(req).unwrap();
230
231 let schema = vec![
232 datatypes::schema::ColumnSchema::new("number", CDT::uint32_datatype(), false),
233 datatypes::schema::ColumnSchema::new(
234 "ts",
235 CDT::timestamp_millisecond_datatype(),
236 false,
237 ),
238 ];
239 let mut columns = vec![];
240 let numbers = (1..=10).collect_vec();
241 let column: VectorRef = Arc::new(<u32 as Scalar>::VectorType::from_vec(numbers));
242 columns.push(column);
243
244 let ts = (1..=10).collect_vec();
245 let mut builder = TimestampMillisecondVectorBuilder::with_capacity(10);
246 ts.into_iter()
247 .map(|v| builder.push(Some(TimestampMillisecond::new(v))))
248 .count();
249 let column: VectorRef = builder.to_vector_cloned();
250 columns.push(column);
251
252 let schema = Arc::new(Schema::new(schema));
253 let recordbatch = common_recordbatch::RecordBatch::new(schema, columns).unwrap();
254 let table = MemTable::table("numbers_with_ts", recordbatch);
255
256 let req_with_ts = RegisterTableRequest {
257 catalog: DEFAULT_CATALOG_NAME.to_string(),
258 schema: DEFAULT_SCHEMA_NAME.to_string(),
259 table_name: "numbers_with_ts".to_string(),
260 table_id: 1024,
261 table,
262 };
263 catalog_list.register_table_sync(req_with_ts).unwrap();
264
265 let factory = query::QueryEngineFactory::new(
266 catalog_list,
267 None,
268 None,
269 None,
270 None,
271 false,
272 QueryOptions::default(),
273 );
274
275 let engine = factory.query_engine();
276 register_function_to_query_engine(&engine);
277
278 assert_eq!("datafusion", engine.name());
279 engine
280 }
281
282 pub async fn sql_to_substrait(engine: Arc<dyn QueryEngine>, sql: &str) -> proto::Plan {
283 let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
285 let plan = engine
286 .planner()
287 .plan(&stmt, QueryContext::arc())
288 .await
289 .unwrap();
290 let plan = apply_df_optimizer(plan, &QueryContext::arc())
291 .await
292 .unwrap();
293
294 let bytes = DFLogicalSubstraitConvertor {}
296 .encode(&plan, DefaultSerializer)
297 .unwrap();
298
299 proto::Plan::decode(bytes).unwrap()
300 }
301
302 #[tokio::test]
304 async fn test_missing_key_check() {
305 let engine = create_test_query_engine();
306 let sql = "SELECT avg(number) FROM numbers_with_ts GROUP BY tumble(ts, '1 hour'), number";
307
308 let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
309 let plan = engine
310 .planner()
311 .plan(&stmt, QueryContext::arc())
312 .await
313 .unwrap();
314 let plan = apply_df_optimizer(plan, &QueryContext::arc()).await;
315
316 assert!(plan.is_err());
317 }
318}