flow/
transform.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Transform Substrait into execution plan
use std::collections::BTreeMap;
use std::sync::Arc;

use common_error::ext::BoxedError;
use common_function::function::FunctionContext;
use datafusion_substrait::extensions::Extensions;
use datatypes::data_type::ConcreteDataType as CDT;
use query::QueryEngine;
use serde::{Deserialize, Serialize};
use snafu::ResultExt;
/// note here we are using the `substrait_proto_df` crate from the `substrait` module and
/// rename it to `substrait_proto`
use substrait::substrait_proto_df as substrait_proto;
use substrait_proto::proto::extensions::simple_extension_declaration::MappingType;
use substrait_proto::proto::extensions::SimpleExtensionDeclaration;

use crate::adapter::FlownodeContext;
use crate::error::{Error, NotImplementedSnafu, UnexpectedSnafu};
use crate::expr::{TUMBLE_END, TUMBLE_START};
/// a simple macro to generate a not implemented error
macro_rules! not_impl_err {
    ($($arg:tt)*)  => {
        NotImplementedSnafu {
            reason: format!($($arg)*),
        }.fail()
    };
}

/// generate a plan error
macro_rules! plan_err {
    ($($arg:tt)*)  => {
        PlanSnafu {
            reason: format!($($arg)*),
        }.fail()
    };
}

mod aggr;
mod expr;
mod literal;
mod plan;

pub(crate) use expr::from_scalar_fn_to_df_fn_impl;

/// In Substrait, a function can be define by an u32 anchor, and the anchor can be mapped to a name
///
/// So in substrait plan, a ref to a function can be a single u32 anchor instead of a full name in string
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct FunctionExtensions {
    anchor_to_name: BTreeMap<u32, String>,
}

impl FunctionExtensions {
    pub fn from_iter(inner: impl IntoIterator<Item = (u32, impl ToString)>) -> Self {
        Self {
            anchor_to_name: inner.into_iter().map(|(k, s)| (k, s.to_string())).collect(),
        }
    }

    /// Create a new FunctionExtensions from a list of SimpleExtensionDeclaration
    pub fn try_from_proto(extensions: &[SimpleExtensionDeclaration]) -> Result<Self, Error> {
        let mut anchor_to_name = BTreeMap::new();
        for e in extensions {
            match &e.mapping_type {
                Some(ext) => match ext {
                    MappingType::ExtensionFunction(ext_f) => {
                        anchor_to_name.insert(ext_f.function_anchor, ext_f.name.clone());
                    }
                    _ => not_impl_err!("Extension type not supported: {ext:?}")?,
                },
                None => not_impl_err!("Cannot parse empty extension")?,
            }
        }
        Ok(Self { anchor_to_name })
    }

    /// Get the name of a function by it's anchor
    pub fn get(&self, anchor: &u32) -> Option<&String> {
        self.anchor_to_name.get(anchor)
    }

    pub fn to_extensions(&self) -> Extensions {
        Extensions {
            functions: self
                .anchor_to_name
                .iter()
                .map(|(k, v)| (*k, v.clone()))
                .collect(),
            ..Default::default()
        }
    }
}

/// register flow-specific functions to the query engine
pub fn register_function_to_query_engine(engine: &Arc<dyn QueryEngine>) {
    engine.register_function(Arc::new(TumbleFunction::new("tumble")));
    engine.register_function(Arc::new(TumbleFunction::new(TUMBLE_START)));
    engine.register_function(Arc::new(TumbleFunction::new(TUMBLE_END)));
}

#[derive(Debug)]
pub struct TumbleFunction {
    name: String,
}

impl TumbleFunction {
    fn new(name: &str) -> Self {
        Self {
            name: name.to_string(),
        }
    }
}

impl std::fmt::Display for TumbleFunction {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}", self.name.to_ascii_uppercase())
    }
}

impl common_function::function::Function for TumbleFunction {
    fn name(&self) -> &str {
        &self.name
    }

    fn return_type(&self, _input_types: &[CDT]) -> common_query::error::Result<CDT> {
        Ok(CDT::timestamp_millisecond_datatype())
    }

    fn signature(&self) -> common_query::prelude::Signature {
        common_query::prelude::Signature::variadic_any(common_query::prelude::Volatility::Immutable)
    }

    fn eval(
        &self,
        _func_ctx: &FunctionContext,
        _columns: &[datatypes::prelude::VectorRef],
    ) -> common_query::error::Result<datatypes::prelude::VectorRef> {
        UnexpectedSnafu {
            reason: "Tumbler function is not implemented for datafusion executor",
        }
        .fail()
        .map_err(BoxedError::new)
        .context(common_query::error::ExecuteSnafu)
    }
}

#[cfg(test)]
mod test {
    use std::sync::Arc;

    use catalog::RegisterTableRequest;
    use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, NUMBERS_TABLE_ID};
    use datatypes::prelude::*;
    use datatypes::schema::Schema;
    use datatypes::timestamp::TimestampMillisecond;
    use datatypes::vectors::{TimestampMillisecondVectorBuilder, VectorRef};
    use itertools::Itertools;
    use prost::Message;
    use query::parser::QueryLanguageParser;
    use query::query_engine::DefaultSerializer;
    use query::QueryEngine;
    use session::context::QueryContext;
    use substrait::{DFLogicalSubstraitConvertor, SubstraitPlan};
    use substrait_proto::proto;
    use table::table::numbers::{NumbersTable, NUMBERS_TABLE_NAME};
    use table::test_util::MemTable;

    use super::*;
    use crate::adapter::node_context::IdToNameMap;
    use crate::adapter::table_source::test::FlowDummyTableSource;
    use crate::df_optimizer::apply_df_optimizer;
    use crate::expr::GlobalId;

    pub fn create_test_ctx() -> FlownodeContext {
        let mut tri_map = IdToNameMap::new();
        // FIXME(discord9): deprecated, use `numbers_with_ts` instead since this table has no timestamp column
        {
            let gid = GlobalId::User(0);
            let name = [
                "greptime".to_string(),
                "public".to_string(),
                "numbers".to_string(),
            ];
            tri_map.insert(Some(name.clone()), Some(1024), gid);
        }

        {
            let gid = GlobalId::User(1);
            let name = [
                "greptime".to_string(),
                "public".to_string(),
                "numbers_with_ts".to_string(),
            ];
            tri_map.insert(Some(name.clone()), Some(1025), gid);
        }

        let dummy_source = FlowDummyTableSource::default();

        let mut ctx = FlownodeContext::new(Box::new(dummy_source));
        ctx.table_repr = tri_map;
        ctx.query_context = Some(Arc::new(QueryContext::with("greptime", "public")));

        ctx
    }

    pub fn create_test_query_engine() -> Arc<dyn QueryEngine> {
        let catalog_list = catalog::memory::new_memory_catalog_manager().unwrap();
        let req = RegisterTableRequest {
            catalog: DEFAULT_CATALOG_NAME.to_string(),
            schema: DEFAULT_SCHEMA_NAME.to_string(),
            table_name: NUMBERS_TABLE_NAME.to_string(),
            table_id: NUMBERS_TABLE_ID,
            table: NumbersTable::table(NUMBERS_TABLE_ID),
        };
        catalog_list.register_table_sync(req).unwrap();

        let schema = vec![
            datatypes::schema::ColumnSchema::new("number", CDT::uint32_datatype(), false),
            datatypes::schema::ColumnSchema::new(
                "ts",
                CDT::timestamp_millisecond_datatype(),
                false,
            ),
        ];
        let mut columns = vec![];
        let numbers = (1..=10).collect_vec();
        let column: VectorRef = Arc::new(<u32 as Scalar>::VectorType::from_vec(numbers));
        columns.push(column);

        let ts = (1..=10).collect_vec();
        let mut builder = TimestampMillisecondVectorBuilder::with_capacity(10);
        ts.into_iter()
            .map(|v| builder.push(Some(TimestampMillisecond::new(v))))
            .count();
        let column: VectorRef = builder.to_vector_cloned();
        columns.push(column);

        let schema = Arc::new(Schema::new(schema));
        let recordbatch = common_recordbatch::RecordBatch::new(schema, columns).unwrap();
        let table = MemTable::table("numbers_with_ts", recordbatch);

        let req_with_ts = RegisterTableRequest {
            catalog: DEFAULT_CATALOG_NAME.to_string(),
            schema: DEFAULT_SCHEMA_NAME.to_string(),
            table_name: "numbers_with_ts".to_string(),
            table_id: 1024,
            table,
        };
        catalog_list.register_table_sync(req_with_ts).unwrap();

        let factory = query::QueryEngineFactory::new(catalog_list, None, None, None, None, false);

        let engine = factory.query_engine();
        register_function_to_query_engine(&engine);

        assert_eq!("datafusion", engine.name());
        engine
    }

    pub async fn sql_to_substrait(engine: Arc<dyn QueryEngine>, sql: &str) -> proto::Plan {
        // let engine = create_test_query_engine();
        let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
        let plan = engine
            .planner()
            .plan(&stmt, QueryContext::arc())
            .await
            .unwrap();
        let plan = apply_df_optimizer(plan).await.unwrap();

        // encode then decode so to rely on the impl of conversion from logical plan to substrait plan
        let bytes = DFLogicalSubstraitConvertor {}
            .encode(&plan, DefaultSerializer)
            .unwrap();

        proto::Plan::decode(bytes).unwrap()
    }

    /// TODO(discord9): add more illegal sql tests
    #[tokio::test]
    async fn test_missing_key_check() {
        let engine = create_test_query_engine();
        let sql = "SELECT avg(number) FROM numbers_with_ts GROUP BY tumble(ts, '1 hour'), number";

        let stmt = QueryLanguageParser::parse_sql(sql, &QueryContext::arc()).unwrap();
        let plan = engine
            .planner()
            .plan(&stmt, QueryContext::arc())
            .await
            .unwrap();
        let plan = apply_df_optimizer(plan).await;

        assert!(plan.is_err());
    }
}