flow/repr/relation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use datafusion_common::DFSchema;
use datatypes::data_type::DataType;
use datatypes::prelude::ConcreteDataType;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use snafu::{ensure, OptionExt, ResultExt};
use crate::error::{DatafusionSnafu, InternalSnafu, InvalidQuerySnafu, Result, UnexpectedSnafu};
use crate::expr::{SafeMfpPlan, ScalarExpr};
/// a set of column indices that are "keys" for the collection.
#[derive(Default, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct Key {
/// indicate whose column form key
pub column_indices: Vec<usize>,
}
impl Key {
/// create a new Key
pub fn new() -> Self {
Default::default()
}
/// create a new Key from a vector of column indices
pub fn from(mut column_indices: Vec<usize>) -> Self {
column_indices.sort_unstable();
Self { column_indices }
}
/// Add a column to Key
pub fn add_col(&mut self, col: usize) {
self.column_indices.push(col);
}
/// Remove a column from Key
pub fn remove_col(&mut self, col: usize) {
self.column_indices.retain(|&r| r != col);
}
/// get all columns in Key
pub fn get(&self) -> &Vec<usize> {
&self.column_indices
}
/// True if Key is empty
pub fn is_empty(&self) -> bool {
self.column_indices.is_empty()
}
/// True if all columns in self are also in other
pub fn subset_of(&self, other: &Key) -> bool {
self.column_indices
.iter()
.all(|c| other.column_indices.contains(c))
}
}
/// The type of a relation.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct RelationType {
/// The type for each column, in order.
pub column_types: Vec<ColumnType>,
/// Sets of indices that are "keys" for the collection.
///
/// Each element in this list is a set of column indices, each with the
/// property that the collection contains at most one record with each
/// distinct set of values for each column. Alternately, for a specific set
/// of values assigned to the these columns there is at most one record.
///
/// A collection can contain multiple sets of keys, although it is common to
/// have either zero or one sets of key indices.
pub keys: Vec<Key>,
/// optionally indicate the column that is TIME INDEX
pub time_index: Option<usize>,
/// mark all the columns that are added automatically by flow, but are not present in original sql
pub auto_columns: Vec<usize>,
}
impl RelationType {
pub fn with_autos(mut self, auto_cols: &[usize]) -> Self {
self.auto_columns = auto_cols.to_vec();
self
}
/// Trying to apply a mpf on current types, will return a new RelationType
/// with the new types, will also try to preserve keys&time index information
/// if the old key&time index columns are preserve in given mfp
///
/// i.e. old column of size 3, with a mfp's
///
/// project = `[2, 1]`,
///
/// the old key = `[1]`, old time index = `[2]`,
///
/// then new key=`[1]`, new time index=`[0]`
///
/// note that this function will remove empty keys like key=`[]` will be removed
pub fn apply_mfp(&self, mfp: &SafeMfpPlan) -> Result<Self> {
let mfp = &mfp.mfp;
let mut all_types = self.column_types.clone();
for expr in &mfp.expressions {
let expr_typ = expr.typ(&self.column_types)?;
all_types.push(expr_typ);
}
let all_types = all_types;
let mfp_out_types = mfp
.projection
.iter()
.map(|i| {
all_types.get(*i).cloned().with_context(|| UnexpectedSnafu {
reason: format!(
"MFP index out of bound, len is {}, but the index is {}",
all_types.len(),
*i
),
})
})
.try_collect()?;
let old_to_new_col = mfp.get_old_to_new_mapping();
// since it's just a mfp, we also try to preserve keys&time index information, if they survive mfp transform
let keys = self
.keys
.iter()
.filter_map(|key| {
key.column_indices
.iter()
.map(|old| old_to_new_col.get(old).cloned())
.collect::<Option<Vec<_>>>()
// remove empty keys
.and_then(|v| if v.is_empty() { None } else { Some(v) })
.map(Key::from)
})
.collect_vec();
let time_index = self
.time_index
.and_then(|old| old_to_new_col.get(&old).cloned());
let auto_columns = self
.auto_columns
.iter()
.filter_map(|old| old_to_new_col.get(old).cloned())
.collect_vec();
Ok(Self {
column_types: mfp_out_types,
keys,
time_index,
auto_columns,
})
}
/// Constructs a `RelationType` representing the relation with no columns and
/// no keys.
pub fn empty() -> Self {
RelationType::new(vec![])
}
/// Constructs a new `RelationType` from specified column types.
///
/// The `RelationType` will have no keys.
pub fn new(column_types: Vec<ColumnType>) -> Self {
RelationType {
column_types,
keys: Vec::new(),
time_index: None,
auto_columns: vec![],
}
}
/// Adds a new key for the relation. Also sorts the key indices.
///
/// will ignore empty key
pub fn with_key(mut self, mut indices: Vec<usize>) -> Self {
if indices.is_empty() {
return self;
}
indices.sort_unstable();
let key = Key::from(indices);
if !self.keys.contains(&key) {
self.keys.push(key);
}
self
}
/// Adds new keys for the relation. Also sorts the key indices.
///
/// will ignore empty keys
pub fn with_keys(mut self, keys: Vec<Vec<usize>>) -> Self {
for key in keys {
self = self.with_key(key)
}
self
}
/// will also remove time index from keys if it's in keys
pub fn with_time_index(mut self, time_index: Option<usize>) -> Self {
self.time_index = time_index;
for key in &mut self.keys {
key.remove_col(time_index.unwrap_or(usize::MAX));
}
// remove empty keys
self.keys.retain(|key| !key.is_empty());
self
}
/// Computes the number of columns in the relation.
pub fn arity(&self) -> usize {
self.column_types.len()
}
/// Gets the index of the columns used when creating a default index.
pub fn default_key(&self) -> Vec<usize> {
if let Some(key) = self.keys.first() {
if key.is_empty() {
(0..self.column_types.len()).collect()
} else {
key.get().clone()
}
} else {
(0..self.column_types.len()).collect()
}
}
/// True if any collection described by `self` could safely be described by `other`.
///
/// In practice this means checking that the scalar types match exactly, and that the
/// nullability of `self` is at least as strict as `other`, and that all keys of `other`
/// contain some key of `self` (as a set of key columns is less strict than any subset).
pub fn subtypes(&self, other: &RelationType) -> bool {
if self.column_types.len() != other.column_types.len() {
return false;
}
for (col1, col2) in self.column_types.iter().zip(other.column_types.iter()) {
if col1.nullable && !col2.nullable {
return false;
}
if col1.scalar_type != col2.scalar_type {
return false;
}
}
let all_keys = other
.keys
.iter()
.all(|key1| self.keys.iter().any(|key2| key1.subset_of(key2)));
if !all_keys {
return false;
}
true
}
/// Return relation describe with column names
pub fn into_named(self, names: Vec<Option<ColumnName>>) -> RelationDesc {
RelationDesc { typ: self, names }
}
/// Return relation describe without column names
pub fn into_unnamed(self) -> RelationDesc {
RelationDesc {
names: vec![None; self.column_types.len()],
typ: self,
}
}
}
/// The type of a `Value`
///
/// [`ColumnType`] bundles information about the scalar type of a datum (e.g.,
/// Int32 or String) with its nullability.
///
/// To construct a column type, either initialize the struct directly, or
/// use the [`ScalarType::nullable`] method.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct ColumnType {
/// The underlying scalar type (e.g., Int32 or String) of this column.
pub scalar_type: ConcreteDataType,
/// Whether this datum can be null.
#[serde(default = "return_true")]
pub nullable: bool,
}
impl ColumnType {
/// Constructs a new `ColumnType` from a scalar type and a nullability flag.
pub fn new(scalar_type: ConcreteDataType, nullable: bool) -> Self {
ColumnType {
scalar_type,
nullable,
}
}
/// Constructs a new `ColumnType` from a scalar type, with nullability set to
/// ***true***
pub fn new_nullable(scalar_type: ConcreteDataType) -> Self {
ColumnType {
scalar_type,
nullable: true,
}
}
/// Returns the scalar type of this column.
pub fn scalar_type(&self) -> &ConcreteDataType {
&self.scalar_type
}
/// Returns true if this column can be null.
pub fn nullable(&self) -> bool {
self.nullable
}
}
/// This method exists solely for the purpose of making ColumnType nullable by
/// default in unit tests. The default value of a bool is false, and the only
/// way to make an object take on any other value by default is to pass it a
/// function that returns the desired default value. See
/// <https://github.com/serde-rs/serde/issues/1030>
#[inline(always)]
fn return_true() -> bool {
true
}
/// A description of the shape of a relation.
///
/// It bundles a [`RelationType`] with the name of each column in the relation.
/// Individual column names are optional.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct RelationDesc {
pub typ: RelationType,
pub names: Vec<Option<ColumnName>>,
}
impl RelationDesc {
pub fn len(&self) -> Result<usize> {
ensure!(
self.typ.column_types.len() == self.names.len(),
InternalSnafu {
reason: "Expect typ and names field to be of same length"
}
);
Ok(self.names.len())
}
pub fn to_df_schema(&self) -> Result<DFSchema> {
let fields: Vec<_> = self
.iter()
.enumerate()
.map(|(i, (name, typ))| {
let name = name.clone().unwrap_or(format!("Col_{i}"));
let nullable = typ.nullable;
let data_type = typ.scalar_type.clone().as_arrow_type();
arrow_schema::Field::new(name, data_type, nullable)
})
.collect();
let arrow_schema = arrow_schema::Schema::new(fields);
DFSchema::try_from(arrow_schema.clone()).with_context(|_e| DatafusionSnafu {
context: format!("Error when converting to DFSchema: {:?}", arrow_schema),
})
}
/// apply mfp, and also project col names for the projected columns
pub fn apply_mfp(&self, mfp: &SafeMfpPlan) -> Result<Self> {
// TODO(discord9): find a way to deduce name at best effect
let names = {
let mfp = &mfp.mfp;
let mut names = self.names.clone();
for expr in &mfp.expressions {
if let ScalarExpr::Column(i) = expr {
names.push(self.names.get(*i).cloned().flatten());
} else {
names.push(None);
}
}
mfp.projection
.iter()
.map(|i| names.get(*i).cloned().flatten())
.collect_vec()
};
Ok(Self {
typ: self.typ.apply_mfp(mfp)?,
names,
})
}
}
impl RelationDesc {
/// Constructs a new `RelationDesc` that represents the empty relation
/// with no columns and no keys.
pub fn empty() -> Self {
RelationDesc {
typ: RelationType::empty(),
names: vec![],
}
}
/// Constructs a new `RelationDesc` from a `RelationType` and an iterator
/// over column names.
///
pub fn try_new<I, N>(typ: RelationType, names: I) -> Result<Self>
where
I: IntoIterator<Item = N>,
N: Into<Option<ColumnName>>,
{
let names: Vec<_> = names.into_iter().map(|name| name.into()).collect();
ensure!(
typ.arity() == names.len(),
InvalidQuerySnafu {
reason: format!(
"Length mismatch between RelationType {:?} and column names {:?}",
typ.column_types, names
)
}
);
Ok(RelationDesc { typ, names })
}
/// Constructs a new `RelationDesc` from a `RelationType` and an iterator
/// over column names.
///
/// # Panics
///
/// Panics if the arity of the `RelationType` is not equal to the number of
/// items in `names`.
pub fn new_unchecked<I, N>(typ: RelationType, names: I) -> Self
where
I: IntoIterator<Item = N>,
N: Into<Option<ColumnName>>,
{
let names: Vec<_> = names.into_iter().map(|name| name.into()).collect();
assert_eq!(typ.arity(), names.len());
RelationDesc { typ, names }
}
pub fn from_names_and_types<I, T, N>(iter: I) -> Self
where
I: IntoIterator<Item = (N, T)>,
T: Into<ColumnType>,
N: Into<Option<ColumnName>>,
{
let (names, types): (Vec<_>, Vec<_>) = iter.into_iter().unzip();
let types = types.into_iter().map(Into::into).collect();
let typ = RelationType::new(types);
Self::new_unchecked(typ, names)
}
/// Concatenates a `RelationDesc` onto the end of this `RelationDesc`.
pub fn concat(mut self, other: Self) -> Self {
let self_len = self.typ.column_types.len();
self.names.extend(other.names);
self.typ.column_types.extend(other.typ.column_types);
for k in other.typ.keys {
let k = k
.column_indices
.into_iter()
.map(|idx| idx + self_len)
.collect();
self = self.with_key(k);
}
self
}
/// Appends a column with the specified name and type.
pub fn with_column<N>(mut self, name: N, column_type: ColumnType) -> Self
where
N: Into<Option<ColumnName>>,
{
self.typ.column_types.push(column_type);
self.names.push(name.into());
self
}
/// Adds a new key for the relation.
pub fn with_key(mut self, indices: Vec<usize>) -> Self {
self.typ = self.typ.with_key(indices);
self
}
/// Builds a new relation description with the column names replaced with
/// new names.
///
pub fn try_with_names<I, N>(self, names: I) -> Result<Self>
where
I: IntoIterator<Item = N>,
N: Into<Option<ColumnName>>,
{
Self::try_new(self.typ, names)
}
/// Computes the number of columns in the relation.
pub fn arity(&self) -> usize {
self.typ.arity()
}
/// Returns the relation type underlying this relation description.
pub fn typ(&self) -> &RelationType {
&self.typ
}
/// Returns an iterator over the columns in this relation.
pub fn iter(&self) -> impl Iterator<Item = (&Option<ColumnName>, &ColumnType)> {
self.iter_names().zip(self.iter_types())
}
/// Returns an iterator over the types of the columns in this relation.
pub fn iter_types(&self) -> impl Iterator<Item = &ColumnType> {
self.typ.column_types.iter()
}
/// Returns an iterator over the names of the columns in this relation.
pub fn iter_names(&self) -> impl Iterator<Item = &Option<ColumnName>> {
self.names.iter()
}
/// Finds a column by name.
///
/// Returns the index and type of the column named `name`. If no column with
/// the specified name exists, returns `None`. If multiple columns have the
/// specified name, the leftmost column is returned.
pub fn get_by_name(&self, name: &ColumnName) -> Option<(usize, &ColumnType)> {
self.iter_names()
.position(|n| n.as_ref() == Some(name))
.map(|i| (i, &self.typ.column_types[i]))
}
/// Gets the name of the `i`th column.
///
/// # Panics
///
/// Panics if `i` is not a valid column index.
pub fn get_name(&self, i: usize) -> &Option<ColumnName> {
&self.names[i]
}
}
/// The name of a column in a [`RelationDesc`].
pub type ColumnName = String;