flow/repr/
relation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use datafusion_common::DFSchema;
use datatypes::data_type::DataType;
use datatypes::prelude::ConcreteDataType;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use snafu::{ensure, OptionExt, ResultExt};

use crate::error::{DatafusionSnafu, InternalSnafu, InvalidQuerySnafu, Result, UnexpectedSnafu};
use crate::expr::{SafeMfpPlan, ScalarExpr};

/// a set of column indices that are "keys" for the collection.
#[derive(Default, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct Key {
    /// indicate whose column form key
    pub column_indices: Vec<usize>,
}

impl Key {
    /// create a new Key
    pub fn new() -> Self {
        Default::default()
    }

    /// create a new Key from a vector of column indices
    pub fn from(mut column_indices: Vec<usize>) -> Self {
        column_indices.sort_unstable();
        Self { column_indices }
    }

    /// Add a column to Key
    pub fn add_col(&mut self, col: usize) {
        self.column_indices.push(col);
    }

    /// Remove a column from Key
    pub fn remove_col(&mut self, col: usize) {
        self.column_indices.retain(|&r| r != col);
    }

    /// get all columns in Key
    pub fn get(&self) -> &Vec<usize> {
        &self.column_indices
    }

    /// True if Key is empty
    pub fn is_empty(&self) -> bool {
        self.column_indices.is_empty()
    }

    /// True if all columns in self are also in other
    pub fn subset_of(&self, other: &Key) -> bool {
        self.column_indices
            .iter()
            .all(|c| other.column_indices.contains(c))
    }
}

/// The type of a relation.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct RelationType {
    /// The type for each column, in order.
    pub column_types: Vec<ColumnType>,
    /// Sets of indices that are "keys" for the collection.
    ///
    /// Each element in this list is a set of column indices, each with the
    /// property that the collection contains at most one record with each
    /// distinct set of values for each column. Alternately, for a specific set
    /// of values assigned to the these columns there is at most one record.
    ///
    /// A collection can contain multiple sets of keys, although it is common to
    /// have either zero or one sets of key indices.
    pub keys: Vec<Key>,
    /// optionally indicate the column that is TIME INDEX
    pub time_index: Option<usize>,
    /// mark all the columns that are added automatically by flow, but are not present in original sql
    pub auto_columns: Vec<usize>,
}

impl RelationType {
    pub fn with_autos(mut self, auto_cols: &[usize]) -> Self {
        self.auto_columns = auto_cols.to_vec();
        self
    }

    /// Trying to apply a mpf on current types, will return a new RelationType
    /// with the new types, will also try to preserve keys&time index information
    /// if the old key&time index columns are preserve in given mfp
    ///
    /// i.e. old column of size 3, with a mfp's
    ///
    /// project = `[2, 1]`,
    ///
    /// the old key = `[1]`, old time index = `[2]`,
    ///
    /// then new key=`[1]`, new time index=`[0]`
    ///
    /// note that this function will remove empty keys like key=`[]` will be removed
    pub fn apply_mfp(&self, mfp: &SafeMfpPlan) -> Result<Self> {
        let mfp = &mfp.mfp;
        let mut all_types = self.column_types.clone();
        for expr in &mfp.expressions {
            let expr_typ = expr.typ(&self.column_types)?;
            all_types.push(expr_typ);
        }
        let all_types = all_types;
        let mfp_out_types = mfp
            .projection
            .iter()
            .map(|i| {
                all_types.get(*i).cloned().with_context(|| UnexpectedSnafu {
                    reason: format!(
                        "MFP index out of bound, len is {}, but the index is {}",
                        all_types.len(),
                        *i
                    ),
                })
            })
            .try_collect()?;

        let old_to_new_col = mfp.get_old_to_new_mapping();

        // since it's just a mfp, we also try to preserve keys&time index information, if they survive mfp transform
        let keys = self
            .keys
            .iter()
            .filter_map(|key| {
                key.column_indices
                    .iter()
                    .map(|old| old_to_new_col.get(old).cloned())
                    .collect::<Option<Vec<_>>>()
                    // remove empty keys
                    .and_then(|v| if v.is_empty() { None } else { Some(v) })
                    .map(Key::from)
            })
            .collect_vec();

        let time_index = self
            .time_index
            .and_then(|old| old_to_new_col.get(&old).cloned());
        let auto_columns = self
            .auto_columns
            .iter()
            .filter_map(|old| old_to_new_col.get(old).cloned())
            .collect_vec();
        Ok(Self {
            column_types: mfp_out_types,
            keys,
            time_index,
            auto_columns,
        })
    }
    /// Constructs a `RelationType` representing the relation with no columns and
    /// no keys.
    pub fn empty() -> Self {
        RelationType::new(vec![])
    }

    /// Constructs a new `RelationType` from specified column types.
    ///
    /// The `RelationType` will have no keys.
    pub fn new(column_types: Vec<ColumnType>) -> Self {
        RelationType {
            column_types,
            keys: Vec::new(),
            time_index: None,
            auto_columns: vec![],
        }
    }

    /// Adds a new key for the relation. Also sorts the key indices.
    ///
    /// will ignore empty key
    pub fn with_key(mut self, mut indices: Vec<usize>) -> Self {
        if indices.is_empty() {
            return self;
        }
        indices.sort_unstable();
        let key = Key::from(indices);
        if !self.keys.contains(&key) {
            self.keys.push(key);
        }
        self
    }

    /// Adds new keys for the relation. Also sorts the key indices.
    ///
    /// will ignore empty keys
    pub fn with_keys(mut self, keys: Vec<Vec<usize>>) -> Self {
        for key in keys {
            self = self.with_key(key)
        }
        self
    }

    /// will also remove time index from keys if it's in keys
    pub fn with_time_index(mut self, time_index: Option<usize>) -> Self {
        self.time_index = time_index;
        for key in &mut self.keys {
            key.remove_col(time_index.unwrap_or(usize::MAX));
        }
        // remove empty keys
        self.keys.retain(|key| !key.is_empty());
        self
    }

    /// Computes the number of columns in the relation.
    pub fn arity(&self) -> usize {
        self.column_types.len()
    }

    /// Gets the index of the columns used when creating a default index.
    pub fn default_key(&self) -> Vec<usize> {
        if let Some(key) = self.keys.first() {
            if key.is_empty() {
                (0..self.column_types.len()).collect()
            } else {
                key.get().clone()
            }
        } else {
            (0..self.column_types.len()).collect()
        }
    }

    /// True if any collection described by `self` could safely be described by `other`.
    ///
    /// In practice this means checking that the scalar types match exactly, and that the
    /// nullability of `self` is at least as strict as `other`, and that all keys of `other`
    /// contain some key of `self` (as a set of key columns is less strict than any subset).
    pub fn subtypes(&self, other: &RelationType) -> bool {
        if self.column_types.len() != other.column_types.len() {
            return false;
        }

        for (col1, col2) in self.column_types.iter().zip(other.column_types.iter()) {
            if col1.nullable && !col2.nullable {
                return false;
            }
            if col1.scalar_type != col2.scalar_type {
                return false;
            }
        }

        let all_keys = other
            .keys
            .iter()
            .all(|key1| self.keys.iter().any(|key2| key1.subset_of(key2)));
        if !all_keys {
            return false;
        }

        true
    }

    /// Return relation describe with column names
    pub fn into_named(self, names: Vec<Option<ColumnName>>) -> RelationDesc {
        RelationDesc { typ: self, names }
    }

    /// Return relation describe without column names
    pub fn into_unnamed(self) -> RelationDesc {
        RelationDesc {
            names: vec![None; self.column_types.len()],
            typ: self,
        }
    }
}

/// The type of a `Value`
///
/// [`ColumnType`] bundles information about the scalar type of a datum (e.g.,
/// Int32 or String) with its nullability.
///
/// To construct a column type, either initialize the struct directly, or
/// use the [`ScalarType::nullable`] method.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct ColumnType {
    /// The underlying scalar type (e.g., Int32 or String) of this column.
    pub scalar_type: ConcreteDataType,
    /// Whether this datum can be null.
    #[serde(default = "return_true")]
    pub nullable: bool,
}

impl ColumnType {
    /// Constructs a new `ColumnType` from a scalar type and a nullability flag.
    pub fn new(scalar_type: ConcreteDataType, nullable: bool) -> Self {
        ColumnType {
            scalar_type,
            nullable,
        }
    }

    /// Constructs a new `ColumnType` from a scalar type, with nullability set to
    /// ***true***
    pub fn new_nullable(scalar_type: ConcreteDataType) -> Self {
        ColumnType {
            scalar_type,
            nullable: true,
        }
    }

    /// Returns the scalar type of this column.
    pub fn scalar_type(&self) -> &ConcreteDataType {
        &self.scalar_type
    }

    /// Returns true if this column can be null.
    pub fn nullable(&self) -> bool {
        self.nullable
    }
}

/// This method exists solely for the purpose of making ColumnType nullable by
/// default in unit tests. The default value of a bool is false, and the only
/// way to make an object take on any other value by default is to pass it a
/// function that returns the desired default value. See
/// <https://github.com/serde-rs/serde/issues/1030>
#[inline(always)]
fn return_true() -> bool {
    true
}

/// A description of the shape of a relation.
///
/// It bundles a [`RelationType`] with the name of each column in the relation.
/// Individual column names are optional.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
pub struct RelationDesc {
    pub typ: RelationType,
    pub names: Vec<Option<ColumnName>>,
}

impl RelationDesc {
    pub fn len(&self) -> Result<usize> {
        ensure!(
            self.typ.column_types.len() == self.names.len(),
            InternalSnafu {
                reason: "Expect typ and names field to be of same length"
            }
        );
        Ok(self.names.len())
    }

    pub fn to_df_schema(&self) -> Result<DFSchema> {
        let fields: Vec<_> = self
            .iter()
            .enumerate()
            .map(|(i, (name, typ))| {
                let name = name.clone().unwrap_or(format!("Col_{i}"));
                let nullable = typ.nullable;
                let data_type = typ.scalar_type.clone().as_arrow_type();
                arrow_schema::Field::new(name, data_type, nullable)
            })
            .collect();
        let arrow_schema = arrow_schema::Schema::new(fields);

        DFSchema::try_from(arrow_schema.clone()).with_context(|_e| DatafusionSnafu {
            context: format!("Error when converting to DFSchema: {:?}", arrow_schema),
        })
    }

    /// apply mfp, and also project col names for the projected columns
    pub fn apply_mfp(&self, mfp: &SafeMfpPlan) -> Result<Self> {
        // TODO(discord9): find a way to deduce name at best effect
        let names = {
            let mfp = &mfp.mfp;
            let mut names = self.names.clone();
            for expr in &mfp.expressions {
                if let ScalarExpr::Column(i) = expr {
                    names.push(self.names.get(*i).cloned().flatten());
                } else {
                    names.push(None);
                }
            }
            mfp.projection
                .iter()
                .map(|i| names.get(*i).cloned().flatten())
                .collect_vec()
        };
        Ok(Self {
            typ: self.typ.apply_mfp(mfp)?,
            names,
        })
    }
}

impl RelationDesc {
    /// Constructs a new `RelationDesc` that represents the empty relation
    /// with no columns and no keys.
    pub fn empty() -> Self {
        RelationDesc {
            typ: RelationType::empty(),
            names: vec![],
        }
    }

    /// Constructs a new `RelationDesc` from a `RelationType` and an iterator
    /// over column names.
    ///
    pub fn try_new<I, N>(typ: RelationType, names: I) -> Result<Self>
    where
        I: IntoIterator<Item = N>,
        N: Into<Option<ColumnName>>,
    {
        let names: Vec<_> = names.into_iter().map(|name| name.into()).collect();
        ensure!(
            typ.arity() == names.len(),
            InvalidQuerySnafu {
                reason: format!(
                    "Length mismatch between RelationType {:?} and column names {:?}",
                    typ.column_types, names
                )
            }
        );
        Ok(RelationDesc { typ, names })
    }

    /// Constructs a new `RelationDesc` from a `RelationType` and an iterator
    /// over column names.
    ///
    /// # Panics
    ///
    /// Panics if the arity of the `RelationType` is not equal to the number of
    /// items in `names`.
    pub fn new_unchecked<I, N>(typ: RelationType, names: I) -> Self
    where
        I: IntoIterator<Item = N>,
        N: Into<Option<ColumnName>>,
    {
        let names: Vec<_> = names.into_iter().map(|name| name.into()).collect();
        assert_eq!(typ.arity(), names.len());
        RelationDesc { typ, names }
    }

    pub fn from_names_and_types<I, T, N>(iter: I) -> Self
    where
        I: IntoIterator<Item = (N, T)>,
        T: Into<ColumnType>,
        N: Into<Option<ColumnName>>,
    {
        let (names, types): (Vec<_>, Vec<_>) = iter.into_iter().unzip();
        let types = types.into_iter().map(Into::into).collect();
        let typ = RelationType::new(types);
        Self::new_unchecked(typ, names)
    }
    /// Concatenates a `RelationDesc` onto the end of this `RelationDesc`.
    pub fn concat(mut self, other: Self) -> Self {
        let self_len = self.typ.column_types.len();
        self.names.extend(other.names);
        self.typ.column_types.extend(other.typ.column_types);
        for k in other.typ.keys {
            let k = k
                .column_indices
                .into_iter()
                .map(|idx| idx + self_len)
                .collect();
            self = self.with_key(k);
        }
        self
    }

    /// Appends a column with the specified name and type.
    pub fn with_column<N>(mut self, name: N, column_type: ColumnType) -> Self
    where
        N: Into<Option<ColumnName>>,
    {
        self.typ.column_types.push(column_type);
        self.names.push(name.into());
        self
    }

    /// Adds a new key for the relation.
    pub fn with_key(mut self, indices: Vec<usize>) -> Self {
        self.typ = self.typ.with_key(indices);
        self
    }

    /// Builds a new relation description with the column names replaced with
    /// new names.
    ///
    pub fn try_with_names<I, N>(self, names: I) -> Result<Self>
    where
        I: IntoIterator<Item = N>,
        N: Into<Option<ColumnName>>,
    {
        Self::try_new(self.typ, names)
    }

    /// Computes the number of columns in the relation.
    pub fn arity(&self) -> usize {
        self.typ.arity()
    }

    /// Returns the relation type underlying this relation description.
    pub fn typ(&self) -> &RelationType {
        &self.typ
    }

    /// Returns an iterator over the columns in this relation.
    pub fn iter(&self) -> impl Iterator<Item = (&Option<ColumnName>, &ColumnType)> {
        self.iter_names().zip(self.iter_types())
    }

    /// Returns an iterator over the types of the columns in this relation.
    pub fn iter_types(&self) -> impl Iterator<Item = &ColumnType> {
        self.typ.column_types.iter()
    }

    /// Returns an iterator over the names of the columns in this relation.
    pub fn iter_names(&self) -> impl Iterator<Item = &Option<ColumnName>> {
        self.names.iter()
    }

    /// Finds a column by name.
    ///
    /// Returns the index and type of the column named `name`. If no column with
    /// the specified name exists, returns `None`. If multiple columns have the
    /// specified name, the leftmost column is returned.
    pub fn get_by_name(&self, name: &ColumnName) -> Option<(usize, &ColumnType)> {
        self.iter_names()
            .position(|n| n.as_ref() == Some(name))
            .map(|i| (i, &self.typ.column_types[i]))
    }

    /// Gets the name of the `i`th column.
    ///
    /// # Panics
    ///
    /// Panics if `i` is not a valid column index.
    pub fn get_name(&self, i: usize) -> &Option<ColumnName> {
        &self.names[i]
    }
}

/// The name of a column in a [`RelationDesc`].
pub type ColumnName = String;