flow/
repr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! basically a wrapper around the `datatype` crate
//! for basic Data Representation

mod relation;

use api::helper::{pb_value_to_value_ref, value_to_grpc_value};
use api::v1::Row as ProtoRow;
use datatypes::data_type::ConcreteDataType;
use datatypes::types::cast;
use datatypes::value::Value;
use get_size2::GetSize;
use itertools::Itertools;
pub(crate) use relation::{ColumnType, Key, RelationDesc, RelationType};
use serde::{Deserialize, Serialize};
use snafu::ResultExt;

use crate::expr::error::{CastValueSnafu, EvalError, InvalidArgumentSnafu};
use crate::utils::get_value_heap_size;

/// System-wide Record count difference type. Useful for capture data change
///
/// i.e. +1 means insert one record, -1 means remove,
/// and +/-n means insert/remove multiple duplicate records.
pub type Diff = i64;

/// System-wide default timestamp type, in milliseconds
pub type Timestamp = i64;

/// System-wide default duration type, in milliseconds
pub type Duration = i64;

/// Default type for a repr of changes to a collection.
pub type DiffRow = (Row, Timestamp, Diff);

/// Row with key-value pair, timestamp and diff
pub type KeyValDiffRow = ((Row, Row), Timestamp, Diff);

/// broadcast channel capacity, can be important to memory consumption, since this influence how many
/// updates can be buffered in memory in the entire dataflow
/// TODO(discord9): add config for this, so cpu&mem usage can be balanced and configured by this
pub const BROADCAST_CAP: usize = 1024;

/// The maximum capacity of the send buffer, to prevent the buffer from growing too large
pub const SEND_BUF_CAP: usize = BROADCAST_CAP * 2;

/// Flow worker will try to at least accumulate this many rows before processing them(if one second haven't passed)
pub const BATCH_SIZE: usize = 32 * 16384;

/// Convert a value that is or can be converted to Datetime to internal timestamp
///
/// support types are: `Date`, `DateTime`, `TimeStamp`, `i64`
pub fn value_to_internal_ts(value: Value) -> Result<i64, EvalError> {
    let is_supported_time_type = |arg: &Value| {
        let ty = arg.data_type();
        matches!(
            ty,
            ConcreteDataType::Date(..) | ConcreteDataType::Timestamp(..)
        )
    };
    match value {
        Value::Int64(ts) => Ok(ts),
        arg if is_supported_time_type(&arg) => {
            let arg_ty = arg.data_type();
            let res = cast(arg, &ConcreteDataType::timestamp_millisecond_datatype()).context({
                CastValueSnafu {
                    from: arg_ty,
                    to: ConcreteDataType::timestamp_millisecond_datatype(),
                }
            })?;
            if let Value::Timestamp(ts) = res {
                Ok(ts.value())
            } else {
                unreachable!()
            }
        }
        _ => InvalidArgumentSnafu {
            reason: format!("Expect a time type or i64, got {:?}", value.data_type()),
        }
        .fail(),
    }
}

/// A row is a vector of values.
///
/// TODO(discord9): use a more efficient representation
/// i.e. more compact like raw u8 of \[tag0, value0, tag1, value1, ...\]
#[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Default, Serialize, Deserialize)]
pub struct Row {
    /// The inner vector of values
    pub inner: Vec<Value>,
}

impl GetSize for Row {
    fn get_heap_size(&self) -> usize {
        self.inner.iter().map(get_value_heap_size).sum()
    }
}

impl Row {
    /// Create an empty row
    pub fn empty() -> Self {
        Self { inner: vec![] }
    }

    /// Returns true if the Row contains no elements.
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Create a row from a vector of values
    pub fn new(row: Vec<Value>) -> Self {
        Self { inner: row }
    }

    /// Get the value at the given index
    pub fn get(&self, idx: usize) -> Option<&Value> {
        self.inner.get(idx)
    }

    /// Clear the row
    pub fn clear(&mut self) {
        self.inner.clear();
    }

    /// clear and return the inner vector
    ///
    /// useful if you want to reuse the vector as a buffer
    pub fn packer(&mut self) -> &mut Vec<Value> {
        self.inner.clear();
        &mut self.inner
    }

    /// pack a iterator of values into a row
    pub fn pack<I>(iter: I) -> Row
    where
        I: IntoIterator<Item = Value>,
    {
        Self {
            inner: iter.into_iter().collect(),
        }
    }

    /// unpack a row into a vector of values
    pub fn unpack(self) -> Vec<Value> {
        self.inner
    }

    /// extend the row with values from an iterator
    pub fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = Value>,
    {
        self.inner.extend(iter);
    }

    /// Creates a consuming iterator, that is, one that moves each value out of the `Row` (from start to end). The `Row` cannot be used after calling this
    pub fn into_iter(self) -> impl Iterator<Item = Value> {
        self.inner.into_iter()
    }

    /// Returns an iterator over the slice.
    pub fn iter(&self) -> impl Iterator<Item = &Value> {
        self.inner.iter()
    }

    /// Returns the number of elements in the row, also known as its 'length'.
    pub fn len(&self) -> usize {
        self.inner.len()
    }
}

impl From<Vec<Value>> for Row {
    fn from(row: Vec<Value>) -> Self {
        Row::new(row)
    }
}

impl From<ProtoRow> for Row {
    fn from(row: ProtoRow) -> Self {
        Row::pack(
            row.values
                .iter()
                .map(|pb_val| -> Value { pb_value_to_value_ref(pb_val, &None).into() }),
        )
    }
}

impl From<Row> for ProtoRow {
    fn from(row: Row) -> Self {
        let values = row
            .unpack()
            .into_iter()
            .map(value_to_grpc_value)
            .collect_vec();
        ProtoRow { values }
    }
}
#[cfg(test)]
mod test {
    use common_time::{Date, Timestamp};

    use super::*;

    #[test]
    fn test_row() {
        let row = Row::empty();
        let row_1 = Row::new(vec![]);
        assert_eq!(row, row_1);
        let mut row_2 = Row::new(vec![Value::Int32(1), Value::Int32(2)]);
        assert_eq!(row_2.get(0), Some(&Value::Int32(1)));
        row_2.clear();
        assert_eq!(row_2.get(0), None);
        row_2
            .packer()
            .extend(vec![Value::Int32(1), Value::Int32(2)]);
        assert_eq!(row_2.get(0), Some(&Value::Int32(1)));
        row_2.extend(vec![Value::Int32(1), Value::Int32(2)]);
        assert_eq!(row_2.len(), 4);
        let row_3 = Row::pack(row_2.into_iter());
        assert_eq!(row_3.len(), 4);
        let row_4 = Row::pack(row_3.iter().cloned());
        assert_eq!(row_3, row_4);
    }

    #[test]
    fn test_cast_to_internal_ts() {
        {
            let a = Value::from(1i32);
            let b = Value::from(1i64);
            let c = Value::Timestamp(Timestamp::new_millisecond(1i64));
            let d = Value::from(1.0);

            assert!(value_to_internal_ts(a).is_err());
            assert_eq!(value_to_internal_ts(b).unwrap(), 1i64);
            assert_eq!(value_to_internal_ts(c).unwrap(), 1i64);
            assert!(value_to_internal_ts(d).is_err());
        }

        {
            // time related type
            let a = Value::Date(Date::new(1));
            assert_eq!(value_to_internal_ts(a).unwrap(), 86400 * 1000i64);
            let b = Value::Timestamp(common_time::Timestamp::new_second(1));
            assert_eq!(value_to_internal_ts(b).unwrap(), 1000i64);
            let c = Value::Time(common_time::time::Time::new_second(1));
            assert!(matches!(
                value_to_internal_ts(c),
                Err(EvalError::InvalidArgument { .. })
            ));
        }
    }
}