flow/repr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! basically a wrapper around the `datatype` crate
//! for basic Data Representation
mod relation;
use api::helper::{pb_value_to_value_ref, value_to_grpc_value};
use api::v1::Row as ProtoRow;
use datatypes::data_type::ConcreteDataType;
use datatypes::types::cast;
use datatypes::value::Value;
use get_size2::GetSize;
use itertools::Itertools;
pub(crate) use relation::{ColumnType, Key, RelationDesc, RelationType};
use serde::{Deserialize, Serialize};
use snafu::ResultExt;
use crate::expr::error::{CastValueSnafu, EvalError, InvalidArgumentSnafu};
use crate::utils::get_value_heap_size;
/// System-wide Record count difference type. Useful for capture data change
///
/// i.e. +1 means insert one record, -1 means remove,
/// and +/-n means insert/remove multiple duplicate records.
pub type Diff = i64;
/// System-wide default timestamp type, in milliseconds
pub type Timestamp = i64;
/// System-wide default duration type, in milliseconds
pub type Duration = i64;
/// Default type for a repr of changes to a collection.
pub type DiffRow = (Row, Timestamp, Diff);
/// Row with key-value pair, timestamp and diff
pub type KeyValDiffRow = ((Row, Row), Timestamp, Diff);
/// broadcast channel capacity, can be important to memory consumption, since this influence how many
/// updates can be buffered in memory in the entire dataflow
/// TODO(discord9): add config for this, so cpu&mem usage can be balanced and configured by this
pub const BROADCAST_CAP: usize = 1024;
/// The maximum capacity of the send buffer, to prevent the buffer from growing too large
pub const SEND_BUF_CAP: usize = BROADCAST_CAP * 2;
/// Flow worker will try to at least accumulate this many rows before processing them(if one second haven't passed)
pub const BATCH_SIZE: usize = 32 * 16384;
/// Convert a value that is or can be converted to Datetime to internal timestamp
///
/// support types are: `Date`, `DateTime`, `TimeStamp`, `i64`
pub fn value_to_internal_ts(value: Value) -> Result<i64, EvalError> {
let is_supported_time_type = |arg: &Value| {
let ty = arg.data_type();
matches!(
ty,
ConcreteDataType::Date(..) | ConcreteDataType::Timestamp(..)
)
};
match value {
Value::Int64(ts) => Ok(ts),
arg if is_supported_time_type(&arg) => {
let arg_ty = arg.data_type();
let res = cast(arg, &ConcreteDataType::timestamp_millisecond_datatype()).context({
CastValueSnafu {
from: arg_ty,
to: ConcreteDataType::timestamp_millisecond_datatype(),
}
})?;
if let Value::Timestamp(ts) = res {
Ok(ts.value())
} else {
unreachable!()
}
}
_ => InvalidArgumentSnafu {
reason: format!("Expect a time type or i64, got {:?}", value.data_type()),
}
.fail(),
}
}
/// A row is a vector of values.
///
/// TODO(discord9): use a more efficient representation
/// i.e. more compact like raw u8 of \[tag0, value0, tag1, value1, ...\]
#[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Default, Serialize, Deserialize)]
pub struct Row {
/// The inner vector of values
pub inner: Vec<Value>,
}
impl GetSize for Row {
fn get_heap_size(&self) -> usize {
self.inner.iter().map(get_value_heap_size).sum()
}
}
impl Row {
/// Create an empty row
pub fn empty() -> Self {
Self { inner: vec![] }
}
/// Returns true if the Row contains no elements.
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
/// Create a row from a vector of values
pub fn new(row: Vec<Value>) -> Self {
Self { inner: row }
}
/// Get the value at the given index
pub fn get(&self, idx: usize) -> Option<&Value> {
self.inner.get(idx)
}
/// Clear the row
pub fn clear(&mut self) {
self.inner.clear();
}
/// clear and return the inner vector
///
/// useful if you want to reuse the vector as a buffer
pub fn packer(&mut self) -> &mut Vec<Value> {
self.inner.clear();
&mut self.inner
}
/// pack a iterator of values into a row
pub fn pack<I>(iter: I) -> Row
where
I: IntoIterator<Item = Value>,
{
Self {
inner: iter.into_iter().collect(),
}
}
/// unpack a row into a vector of values
pub fn unpack(self) -> Vec<Value> {
self.inner
}
/// extend the row with values from an iterator
pub fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = Value>,
{
self.inner.extend(iter);
}
/// Creates a consuming iterator, that is, one that moves each value out of the `Row` (from start to end). The `Row` cannot be used after calling this
pub fn into_iter(self) -> impl Iterator<Item = Value> {
self.inner.into_iter()
}
/// Returns an iterator over the slice.
pub fn iter(&self) -> impl Iterator<Item = &Value> {
self.inner.iter()
}
/// Returns the number of elements in the row, also known as its 'length'.
pub fn len(&self) -> usize {
self.inner.len()
}
}
impl From<Vec<Value>> for Row {
fn from(row: Vec<Value>) -> Self {
Row::new(row)
}
}
impl From<ProtoRow> for Row {
fn from(row: ProtoRow) -> Self {
Row::pack(
row.values
.iter()
.map(|pb_val| -> Value { pb_value_to_value_ref(pb_val, &None).into() }),
)
}
}
impl From<Row> for ProtoRow {
fn from(row: Row) -> Self {
let values = row
.unpack()
.into_iter()
.map(value_to_grpc_value)
.collect_vec();
ProtoRow { values }
}
}
#[cfg(test)]
mod test {
use common_time::{Date, Timestamp};
use super::*;
#[test]
fn test_row() {
let row = Row::empty();
let row_1 = Row::new(vec![]);
assert_eq!(row, row_1);
let mut row_2 = Row::new(vec![Value::Int32(1), Value::Int32(2)]);
assert_eq!(row_2.get(0), Some(&Value::Int32(1)));
row_2.clear();
assert_eq!(row_2.get(0), None);
row_2
.packer()
.extend(vec![Value::Int32(1), Value::Int32(2)]);
assert_eq!(row_2.get(0), Some(&Value::Int32(1)));
row_2.extend(vec![Value::Int32(1), Value::Int32(2)]);
assert_eq!(row_2.len(), 4);
let row_3 = Row::pack(row_2.into_iter());
assert_eq!(row_3.len(), 4);
let row_4 = Row::pack(row_3.iter().cloned());
assert_eq!(row_3, row_4);
}
#[test]
fn test_cast_to_internal_ts() {
{
let a = Value::from(1i32);
let b = Value::from(1i64);
let c = Value::Timestamp(Timestamp::new_millisecond(1i64));
let d = Value::from(1.0);
assert!(value_to_internal_ts(a).is_err());
assert_eq!(value_to_internal_ts(b).unwrap(), 1i64);
assert_eq!(value_to_internal_ts(c).unwrap(), 1i64);
assert!(value_to_internal_ts(d).is_err());
}
{
// time related type
let a = Value::Date(Date::new(1));
assert_eq!(value_to_internal_ts(a).unwrap(), 86400 * 1000i64);
let b = Value::Timestamp(common_time::Timestamp::new_second(1));
assert_eq!(value_to_internal_ts(b).unwrap(), 1000i64);
let c = Value::Time(common_time::time::Time::new_second(1));
assert!(matches!(
value_to_internal_ts(c),
Err(EvalError::InvalidArgument { .. })
));
}
}
}