flow/recording_rules/
time_window.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Time window expr and helper functions
//!

use std::collections::BTreeSet;
use std::sync::Arc;

use api::helper::pb_value_to_value_ref;
use arrow::array::{
    TimestampMicrosecondArray, TimestampMillisecondArray, TimestampNanosecondArray,
    TimestampSecondArray,
};
use catalog::CatalogManagerRef;
use common_error::ext::BoxedError;
use common_recordbatch::DfRecordBatch;
use common_telemetry::warn;
use common_time::timestamp::TimeUnit;
use common_time::Timestamp;
use datafusion::error::Result as DfResult;
use datafusion::execution::SessionState;
use datafusion::logical_expr::Expr;
use datafusion::physical_planner::{DefaultPhysicalPlanner, PhysicalPlanner};
use datafusion_common::tree_node::{Transformed, TreeNode, TreeNodeRecursion, TreeNodeRewriter};
use datafusion_common::{DFSchema, TableReference};
use datafusion_expr::{ColumnarValue, LogicalPlan};
use datafusion_physical_expr::PhysicalExprRef;
use datatypes::prelude::{ConcreteDataType, DataType};
use datatypes::schema::TIME_INDEX_KEY;
use datatypes::value::Value;
use datatypes::vectors::{
    TimestampMicrosecondVector, TimestampMillisecondVector, TimestampNanosecondVector,
    TimestampSecondVector, Vector,
};
use itertools::Itertools;
use session::context::QueryContextRef;
use snafu::{ensure, OptionExt, ResultExt};

use crate::adapter::util::from_proto_to_data_type;
use crate::error::{
    ArrowSnafu, DatafusionSnafu, DatatypesSnafu, ExternalSnafu, PlanSnafu, UnexpectedSnafu,
};
use crate::expr::error::DataTypeSnafu;
use crate::Error;

/// Time window expr like `date_bin(INTERVAL '1' MINUTE, ts)`, this type help with
/// evaluating the expr using given timestamp
///
/// The time window expr must satisfies following conditions:
/// 1. The expr must be monotonic non-decreasing
/// 2. The expr must only have one and only one input column with timestamp type, and the output column must be timestamp type
/// 3. The expr must be deterministic
///
/// An example of time window expr is `date_bin(INTERVAL '1' MINUTE, ts)`
#[derive(Debug, Clone)]
pub struct TimeWindowExpr {
    phy_expr: PhysicalExprRef,
    column_name: String,
    logical_expr: Expr,
    df_schema: DFSchema,
}

impl TimeWindowExpr {
    pub fn from_expr(
        expr: &Expr,
        column_name: &str,
        df_schema: &DFSchema,
        session: &SessionState,
    ) -> Result<Self, Error> {
        let phy_expr: PhysicalExprRef = to_phy_expr(expr, df_schema, session)?;
        Ok(Self {
            phy_expr,
            column_name: column_name.to_string(),
            logical_expr: expr.clone(),
            df_schema: df_schema.clone(),
        })
    }

    pub fn eval(
        &self,
        current: Timestamp,
    ) -> Result<(Option<Timestamp>, Option<Timestamp>), Error> {
        let lower_bound =
            calc_expr_time_window_lower_bound(&self.phy_expr, &self.df_schema, current)?;
        let upper_bound =
            probe_expr_time_window_upper_bound(&self.phy_expr, &self.df_schema, current)?;
        Ok((lower_bound, upper_bound))
    }

    /// Find timestamps from rows using time window expr
    ///
    /// use column of name `self.column_name` from input rows list as input to time window expr
    pub async fn handle_rows(
        &self,
        rows_list: Vec<api::v1::Rows>,
    ) -> Result<BTreeSet<Timestamp>, Error> {
        let mut time_windows = BTreeSet::new();

        for rows in rows_list {
            // pick the time index column and use it to eval on `self.expr`
            // TODO(discord9): handle case where time index column is not present(i.e. DEFAULT constant value)
            let ts_col_index = rows
                .schema
                .iter()
                .map(|col| col.column_name.clone())
                .position(|name| name == self.column_name);
            let Some(ts_col_index) = ts_col_index else {
                warn!("can't found time index column in schema: {:?}", rows.schema);
                continue;
            };
            let col_schema = &rows.schema[ts_col_index];
            let cdt = from_proto_to_data_type(col_schema)?;

            let mut vector = cdt.create_mutable_vector(rows.rows.len());
            for row in rows.rows {
                let value = pb_value_to_value_ref(&row.values[ts_col_index], &None);
                vector.try_push_value_ref(value).context(DataTypeSnafu {
                    msg: "Failed to convert rows to columns",
                })?;
            }
            let vector = vector.to_vector();

            let df_schema = create_df_schema_for_ts_column(&self.column_name, cdt)?;

            let rb =
                DfRecordBatch::try_new(df_schema.inner().clone(), vec![vector.to_arrow_array()])
                    .with_context(|_e| ArrowSnafu {
                        context: format!(
                            "Failed to create record batch from {df_schema:?} and {vector:?}"
                        ),
                    })?;

            let eval_res = self
                .phy_expr
                .evaluate(&rb)
                .with_context(|_| DatafusionSnafu {
                    context: format!(
                        "Failed to evaluate physical expression {:?} on {rb:?}",
                        self.phy_expr
                    ),
                })?;

            let res = columnar_to_ts_vector(&eval_res)?;

            for ts in res.into_iter().flatten() {
                time_windows.insert(ts);
            }
        }

        Ok(time_windows)
    }
}

fn create_df_schema_for_ts_column(name: &str, cdt: ConcreteDataType) -> Result<DFSchema, Error> {
    let arrow_schema = Arc::new(arrow_schema::Schema::new(vec![arrow_schema::Field::new(
        name,
        cdt.as_arrow_type(),
        false,
    )]));

    let df_schema = DFSchema::from_field_specific_qualified_schema(
        vec![Some(TableReference::bare("TimeIndexOnlyTable"))],
        &arrow_schema,
    )
    .with_context(|_e| DatafusionSnafu {
        context: format!("Failed to create DFSchema from arrow schema {arrow_schema:?}"),
    })?;

    Ok(df_schema)
}

/// Convert `ColumnarValue` to `Vec<Option<Timestamp>>`
fn columnar_to_ts_vector(columnar: &ColumnarValue) -> Result<Vec<Option<Timestamp>>, Error> {
    let val = match columnar {
        datafusion_expr::ColumnarValue::Array(array) => {
            let ty = array.data_type();
            let ty = ConcreteDataType::from_arrow_type(ty);
            let time_unit = if let ConcreteDataType::Timestamp(ty) = ty {
                ty.unit()
            } else {
                return UnexpectedSnafu {
                    reason: format!("Non-timestamp type: {ty:?}"),
                }
                .fail();
            };

            match time_unit {
                TimeUnit::Second => array
                    .as_ref()
                    .as_any()
                    .downcast_ref::<TimestampSecondArray>()
                    .with_context(|| PlanSnafu {
                        reason: format!("Failed to create vector from arrow array {array:?}"),
                    })?
                    .values()
                    .iter()
                    .map(|d| Some(Timestamp::new(*d, time_unit)))
                    .collect_vec(),
                TimeUnit::Millisecond => array
                    .as_ref()
                    .as_any()
                    .downcast_ref::<TimestampMillisecondArray>()
                    .with_context(|| PlanSnafu {
                        reason: format!("Failed to create vector from arrow array {array:?}"),
                    })?
                    .values()
                    .iter()
                    .map(|d| Some(Timestamp::new(*d, time_unit)))
                    .collect_vec(),
                TimeUnit::Microsecond => array
                    .as_ref()
                    .as_any()
                    .downcast_ref::<TimestampMicrosecondArray>()
                    .with_context(|| PlanSnafu {
                        reason: format!("Failed to create vector from arrow array {array:?}"),
                    })?
                    .values()
                    .iter()
                    .map(|d| Some(Timestamp::new(*d, time_unit)))
                    .collect_vec(),
                TimeUnit::Nanosecond => array
                    .as_ref()
                    .as_any()
                    .downcast_ref::<TimestampNanosecondArray>()
                    .with_context(|| PlanSnafu {
                        reason: format!("Failed to create vector from arrow array {array:?}"),
                    })?
                    .values()
                    .iter()
                    .map(|d| Some(Timestamp::new(*d, time_unit)))
                    .collect_vec(),
            }
        }
        datafusion_expr::ColumnarValue::Scalar(scalar) => {
            let value = Value::try_from(scalar.clone()).with_context(|_| DatatypesSnafu {
                extra: format!("Failed to convert scalar {scalar:?} to value"),
            })?;
            let ts = value.as_timestamp().context(UnexpectedSnafu {
                reason: format!("Expect Timestamp, found {:?}", value),
            })?;
            vec![Some(ts)]
        }
    };
    Ok(val)
}

/// Return (the column name of time index column, the time window expr, the expected time unit of time index column, the expr's schema for evaluating the time window)
///
/// The time window expr is expected to have one input column with Timestamp type, and also return Timestamp type, the time window expr is expected
/// to be monotonic increasing and appears in the innermost GROUP BY clause
///
/// note this plan should only contain one TableScan
async fn find_time_window_expr(
    plan: &LogicalPlan,
    catalog_man: CatalogManagerRef,
    query_ctx: QueryContextRef,
) -> Result<(String, Option<datafusion_expr::Expr>, TimeUnit, DFSchema), Error> {
    // TODO(discord9): find the expr that do time window

    let mut table_name = None;

    // first find the table source in the logical plan
    plan.apply(|plan| {
        let LogicalPlan::TableScan(table_scan) = plan else {
            return Ok(TreeNodeRecursion::Continue);
        };
        table_name = Some(table_scan.table_name.clone());
        Ok(TreeNodeRecursion::Stop)
    })
    .with_context(|_| DatafusionSnafu {
        context: format!("Can't find table source in plan {plan:?}"),
    })?;
    let Some(table_name) = table_name else {
        UnexpectedSnafu {
            reason: format!("Can't find table source in plan {plan:?}"),
        }
        .fail()?
    };

    let current_schema = query_ctx.current_schema();

    let catalog_name = table_name.catalog().unwrap_or(query_ctx.current_catalog());
    let schema_name = table_name.schema().unwrap_or(&current_schema);
    let table_name = table_name.table();

    let Some(table_ref) = catalog_man
        .table(catalog_name, schema_name, table_name, Some(&query_ctx))
        .await
        .map_err(BoxedError::new)
        .context(ExternalSnafu)?
    else {
        UnexpectedSnafu {
            reason: format!(
                "Can't find table {table_name:?} in catalog {catalog_name:?}/{schema_name:?}"
            ),
        }
        .fail()?
    };

    let schema = &table_ref.table_info().meta.schema;

    let ts_index = schema.timestamp_column().with_context(|| UnexpectedSnafu {
        reason: format!("Can't find timestamp column in table {table_name:?}"),
    })?;

    let ts_col_name = ts_index.name.clone();

    let expected_time_unit = ts_index.data_type.as_timestamp().with_context(|| UnexpectedSnafu {
        reason: format!(
            "Expected timestamp column {ts_col_name:?} in table {table_name:?} to be timestamp, but got {ts_index:?}"
        ),
    })?.unit();

    let arrow_schema = Arc::new(arrow_schema::Schema::new(vec![arrow_schema::Field::new(
        ts_col_name.clone(),
        ts_index.data_type.as_arrow_type(),
        false,
    )]));

    let df_schema = DFSchema::from_field_specific_qualified_schema(
        vec![Some(TableReference::bare(table_name))],
        &arrow_schema,
    )
    .with_context(|_e| DatafusionSnafu {
        context: format!("Failed to create DFSchema from arrow schema {arrow_schema:?}"),
    })?;

    // find the time window expr which refers to the time index column
    let mut aggr_expr = None;
    let mut time_window_expr: Option<Expr> = None;

    let find_inner_aggr_expr = |plan: &LogicalPlan| {
        if let LogicalPlan::Aggregate(aggregate) = plan {
            aggr_expr = Some(aggregate.clone());
        };

        Ok(TreeNodeRecursion::Continue)
    };
    plan.apply(find_inner_aggr_expr)
        .with_context(|_| DatafusionSnafu {
            context: format!("Can't find aggr expr in plan {plan:?}"),
        })?;

    if let Some(aggregate) = aggr_expr {
        for group_expr in &aggregate.group_expr {
            let refs = group_expr.column_refs();
            if refs.len() != 1 {
                continue;
            }
            let ref_col = refs.iter().next().unwrap();

            let index = aggregate.input.schema().maybe_index_of_column(ref_col);
            let Some(index) = index else {
                continue;
            };
            let field = aggregate.input.schema().field(index);

            // TODO(discord9): need to ensure the field has the meta key for the time index
            let is_time_index =
                field.metadata().get(TIME_INDEX_KEY).map(|s| s.as_str()) == Some("true");

            if is_time_index {
                let rewrite_column = group_expr.clone();
                let rewritten = rewrite_column
                    .rewrite(&mut RewriteColumn {
                        table_name: table_name.to_string(),
                    })
                    .with_context(|_| DatafusionSnafu {
                        context: format!("Rewrite expr failed, expr={:?}", group_expr),
                    })?
                    .data;
                struct RewriteColumn {
                    table_name: String,
                }

                impl TreeNodeRewriter for RewriteColumn {
                    type Node = Expr;
                    fn f_down(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
                        let Expr::Column(mut column) = node else {
                            return Ok(Transformed::no(node));
                        };

                        column.relation = Some(TableReference::bare(self.table_name.clone()));

                        Ok(Transformed::yes(Expr::Column(column)))
                    }
                }

                time_window_expr = Some(rewritten);
                break;
            }
        }
        Ok((ts_col_name, time_window_expr, expected_time_unit, df_schema))
    } else {
        // can't found time window expr, return None
        Ok((ts_col_name, None, expected_time_unit, df_schema))
    }
}

/// Find nearest lower bound for time `current` in given `plan` for the time window expr.
/// i.e. for time window expr being `date_bin(INTERVAL '5 minutes', ts) as time_window` and `current="2021-07-01 00:01:01.000"`,
/// return `Some("2021-07-01 00:00:00.000")`
/// if `plan` doesn't contain a `TIME INDEX` column, return `None`
///
/// Time window expr is a expr that:
/// 1. ref only to a time index column
/// 2. is monotonic increasing
/// 3. show up in GROUP BY clause
///
/// note this plan should only contain one TableScan
#[cfg(test)]
pub async fn find_plan_time_window_bound(
    plan: &LogicalPlan,
    current: Timestamp,
    query_ctx: QueryContextRef,
    engine: query::QueryEngineRef,
) -> Result<(String, Option<Timestamp>, Option<Timestamp>), Error> {
    // TODO(discord9): find the expr that do time window
    let catalog_man = engine.engine_state().catalog_manager();

    let (ts_col_name, time_window_expr, expected_time_unit, df_schema) =
        find_time_window_expr(plan, catalog_man.clone(), query_ctx).await?;
    // cast current to ts_index's type
    let new_current = current
        .convert_to(expected_time_unit)
        .with_context(|| UnexpectedSnafu {
            reason: format!("Failed to cast current timestamp {current:?} to {expected_time_unit}"),
        })?;

    // if no time_window_expr is found, return None
    if let Some(time_window_expr) = time_window_expr {
        let phy_expr = to_phy_expr(
            &time_window_expr,
            &df_schema,
            &engine.engine_state().session_state(),
        )?;
        let lower_bound = calc_expr_time_window_lower_bound(&phy_expr, &df_schema, new_current)?;
        let upper_bound = probe_expr_time_window_upper_bound(&phy_expr, &df_schema, new_current)?;
        Ok((ts_col_name, lower_bound, upper_bound))
    } else {
        Ok((ts_col_name, None, None))
    }
}

/// Find the lower bound of time window in given `expr` and `current` timestamp.
///
/// i.e. for `current="2021-07-01 00:01:01.000"` and `expr=date_bin(INTERVAL '5 minutes', ts) as time_window` and `ts_col=ts`,
/// return `Some("2021-07-01 00:00:00.000")` since it's the lower bound
/// return `Some("2021-07-01 00:00:00.000")` since it's the lower bound
/// of current time window given the current timestamp
///
/// if return None, meaning this time window have no lower bound
fn calc_expr_time_window_lower_bound(
    phy_expr: &PhysicalExprRef,
    df_schema: &DFSchema,
    current: Timestamp,
) -> Result<Option<Timestamp>, Error> {
    let cur_time_window = eval_phy_time_window_expr(phy_expr, df_schema, current)?;
    let input_time_unit = cur_time_window.unit();
    Ok(cur_time_window.convert_to(input_time_unit))
}

/// Probe for the upper bound for time window expression
fn probe_expr_time_window_upper_bound(
    phy_expr: &PhysicalExprRef,
    df_schema: &DFSchema,
    current: Timestamp,
) -> Result<Option<Timestamp>, Error> {
    // TODO(discord9): special handling `date_bin` for faster path
    use std::cmp::Ordering;

    let cur_time_window = eval_phy_time_window_expr(phy_expr, df_schema, current)?;

    // search to find the lower bound
    let mut offset: i64 = 1;
    let mut lower_bound = Some(current);
    let upper_bound;
    // first expontial probe to found a range for binary search
    loop {
        let Some(next_val) = current.value().checked_add(offset) else {
            // no upper bound if overflow, which is ok
            return Ok(None);
        };

        let next_time_probe = common_time::Timestamp::new(next_val, current.unit());

        let next_time_window = eval_phy_time_window_expr(phy_expr, df_schema, next_time_probe)?;

        match next_time_window.cmp(&cur_time_window) {
            Ordering::Less => UnexpectedSnafu {
                    reason: format!(
                        "Unsupported time window expression, expect monotonic increasing for time window expression {phy_expr:?}"
                    ),
                }
                .fail()?,
            Ordering::Equal => {
                lower_bound = Some(next_time_probe);
            }
            Ordering::Greater => {
                upper_bound = Some(next_time_probe);
                break
            }
        }

        let Some(new_offset) = offset.checked_mul(2) else {
            // no upper bound if overflow
            return Ok(None);
        };
        offset = new_offset;
    }

    // binary search for the exact upper bound

    binary_search_expr(
        lower_bound,
        upper_bound,
        cur_time_window,
        phy_expr,
        df_schema,
    )
    .map(Some)
}

fn binary_search_expr(
    lower_bound: Option<Timestamp>,
    upper_bound: Option<Timestamp>,
    cur_time_window: Timestamp,
    phy_expr: &PhysicalExprRef,
    df_schema: &DFSchema,
) -> Result<Timestamp, Error> {
    ensure!(lower_bound.map(|v|v.unit()) == upper_bound.map(|v| v.unit()), UnexpectedSnafu {
        reason: format!(" unit mismatch for time window expression {phy_expr:?}, found {lower_bound:?} and {upper_bound:?}"),
    });

    let output_unit = upper_bound
        .context(UnexpectedSnafu {
            reason: "should have lower bound",
        })?
        .unit();

    let mut low = lower_bound
        .context(UnexpectedSnafu {
            reason: "should have lower bound",
        })?
        .value();
    let mut high = upper_bound
        .context(UnexpectedSnafu {
            reason: "should have upper bound",
        })?
        .value();
    while low < high {
        let mid = (low + high) / 2;
        let mid_probe = common_time::Timestamp::new(mid, output_unit);
        let mid_time_window = eval_phy_time_window_expr(phy_expr, df_schema, mid_probe)?;

        match mid_time_window.cmp(&cur_time_window) {
            std::cmp::Ordering::Less => UnexpectedSnafu {
                reason: format!("Binary search failed for time window expression {phy_expr:?}"),
            }
            .fail()?,
            std::cmp::Ordering::Equal => low = mid + 1,
            std::cmp::Ordering::Greater => high = mid,
        }
    }

    let final_upper_bound_for_time_window = common_time::Timestamp::new(high, output_unit);
    Ok(final_upper_bound_for_time_window)
}

/// Expect the `phy` expression only have one input column with Timestamp type, and also return Timestamp type
fn eval_phy_time_window_expr(
    phy: &PhysicalExprRef,
    df_schema: &DFSchema,
    input_value: Timestamp,
) -> Result<Timestamp, Error> {
    let schema_ty = df_schema.field(0).data_type();
    let schema_cdt = ConcreteDataType::from_arrow_type(schema_ty);
    let schema_unit = if let ConcreteDataType::Timestamp(ts) = schema_cdt {
        ts.unit()
    } else {
        return UnexpectedSnafu {
            reason: format!("Expect Timestamp, found {:?}", schema_cdt),
        }
        .fail();
    };
    let input_value = input_value
        .convert_to(schema_unit)
        .with_context(|| UnexpectedSnafu {
            reason: format!("Failed to convert timestamp {input_value:?} to {schema_unit}"),
        })?;
    let ts_vector = match schema_unit {
        TimeUnit::Second => {
            TimestampSecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
        }
        TimeUnit::Millisecond => {
            TimestampMillisecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
        }
        TimeUnit::Microsecond => {
            TimestampMicrosecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
        }
        TimeUnit::Nanosecond => {
            TimestampNanosecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
        }
    };

    let rb = DfRecordBatch::try_new(df_schema.inner().clone(), vec![ts_vector.clone()])
        .with_context(|_| ArrowSnafu {
            context: format!("Failed to create record batch from {df_schema:?} and {ts_vector:?}"),
        })?;

    let eval_res = phy.evaluate(&rb).with_context(|_| DatafusionSnafu {
        context: format!("Failed to evaluate physical expression {phy:?} on {rb:?}"),
    })?;

    if let Some(Some(ts)) = columnar_to_ts_vector(&eval_res)?.first() {
        Ok(*ts)
    } else {
        UnexpectedSnafu {
            reason: format!(
                "Expected timestamp in expression {phy:?} but got {:?}",
                eval_res
            ),
        }
        .fail()?
    }
}

fn to_phy_expr(
    expr: &Expr,
    df_schema: &DFSchema,
    session: &SessionState,
) -> Result<PhysicalExprRef, Error> {
    let phy_planner = DefaultPhysicalPlanner::default();

    let phy_expr: PhysicalExprRef = phy_planner
        .create_physical_expr(expr, df_schema, session)
        .with_context(|_e| DatafusionSnafu {
            context: format!(
                "Failed to create physical expression from {expr:?} using {df_schema:?}"
            ),
        })?;
    Ok(phy_expr)
}

#[cfg(test)]
mod test {
    use datafusion_common::tree_node::TreeNode;
    use pretty_assertions::assert_eq;
    use session::context::QueryContext;

    use super::*;
    use crate::recording_rules::utils::{df_plan_to_sql, sql_to_df_plan, AddFilterRewriter};
    use crate::test_utils::create_test_query_engine;

    #[tokio::test]
    async fn test_plan_time_window_lower_bound() {
        use datafusion_expr::{col, lit};
        let query_engine = create_test_query_engine();
        let ctx = QueryContext::arc();

        let testcases = [
            // same alias is not same column
            (
                "SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS ts FROM numbers_with_ts GROUP BY ts;",
                Timestamp::new(1740394109, TimeUnit::Second),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(1740394109000, TimeUnit::Millisecond)),
                    Some(Timestamp::new(1740394109001, TimeUnit::Millisecond)),
                ),
                r#"SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS ts FROM numbers_with_ts WHERE ((ts >= CAST('2025-02-24 10:48:29' AS TIMESTAMP)) AND (ts <= CAST('2025-02-24 10:48:29.001' AS TIMESTAMP))) GROUP BY numbers_with_ts.ts"#
            ),
            // complex time window index
            (
                "SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS time_window FROM numbers_with_ts GROUP BY time_window;",
                Timestamp::new(1740394109, TimeUnit::Second),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(1740394080, TimeUnit::Second)),
                    Some(Timestamp::new(1740394140, TimeUnit::Second)),
                ),
                "SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('2025-02-24 10:48:00' AS TIMESTAMP)) AND (ts <= CAST('2025-02-24 10:49:00' AS TIMESTAMP))) GROUP BY arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)')"
            ),
            // no time index
            (
                "SELECT date_bin('5 minutes', ts) FROM numbers_with_ts;",
                Timestamp::new(23, TimeUnit::Millisecond),
                ("ts".to_string(), None, None),
                "SELECT date_bin('5 minutes', ts) FROM numbers_with_ts;"
            ),
            // time index
            (
                "SELECT date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
                Timestamp::new(23, TimeUnit::Nanosecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
            ),
            // on spot
            (
                "SELECT date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
                Timestamp::new(0, TimeUnit::Nanosecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
            ),
            // different time unit
            (
                "SELECT date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
                Timestamp::new(23_000_000, TimeUnit::Nanosecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
            ),
            // time index with other fields
            (
                "SELECT sum(number) as sum_up, date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
                Timestamp::new(23, TimeUnit::Millisecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT sum(numbers_with_ts.number) AS sum_up, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
            ),
            // time index with other pks
            (
                "SELECT number, date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window, number;",
                Timestamp::new(23, TimeUnit::Millisecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts), numbers_with_ts.number"
            ),
            // subquery
            (
                "SELECT number, time_window FROM (SELECT number, date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window, number);",
                Timestamp::new(23, TimeUnit::Millisecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT numbers_with_ts.number, time_window FROM (SELECT numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts), numbers_with_ts.number)"
            ),
            // cte
            (
                "with cte as (select number, date_bin('5 minutes', ts) as time_window from numbers_with_ts GROUP BY time_window, number) select number, time_window from cte;",
                Timestamp::new(23, TimeUnit::Millisecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT cte.number, cte.time_window FROM (SELECT numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts), numbers_with_ts.number) AS cte"
            ),
            // complex subquery without alias
            (
                "SELECT sum(number), number, date_bin('5 minutes', ts) as time_window, bucket_name FROM (SELECT number, ts, case when number < 5 THEN 'bucket_0_5' when number >= 5 THEN 'bucket_5_inf' END as bucket_name FROM numbers_with_ts) GROUP BY number, time_window, bucket_name;",
                Timestamp::new(23, TimeUnit::Millisecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT sum(numbers_with_ts.number), numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window, bucket_name FROM (SELECT numbers_with_ts.number, numbers_with_ts.ts, CASE WHEN (numbers_with_ts.number < 5) THEN 'bucket_0_5' WHEN (numbers_with_ts.number >= 5) THEN 'bucket_5_inf' END AS bucket_name FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP)))) GROUP BY numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts), bucket_name"
            ),
            // complex subquery alias
            (
                "SELECT sum(number), number, date_bin('5 minutes', ts) as time_window, bucket_name FROM (SELECT number, ts, case when number < 5 THEN 'bucket_0_5' when number >= 5 THEN 'bucket_5_inf' END as bucket_name FROM numbers_with_ts) as cte GROUP BY number, time_window, bucket_name;",
                Timestamp::new(23, TimeUnit::Millisecond),
                (
                    "ts".to_string(),
                    Some(Timestamp::new(0, TimeUnit::Millisecond)),
                    Some(Timestamp::new(300000, TimeUnit::Millisecond)),
                ),
                "SELECT sum(cte.number), cte.number, date_bin('5 minutes', cte.ts) AS time_window, cte.bucket_name FROM (SELECT numbers_with_ts.number, numbers_with_ts.ts, CASE WHEN (numbers_with_ts.number < 5) THEN 'bucket_0_5' WHEN (numbers_with_ts.number >= 5) THEN 'bucket_5_inf' END AS bucket_name FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP)))) AS cte GROUP BY cte.number, date_bin('5 minutes', cte.ts), cte.bucket_name"
            ),
        ];

        for (sql, current, expected, expected_unparsed) in testcases {
            let plan = sql_to_df_plan(ctx.clone(), query_engine.clone(), sql, true)
                .await
                .unwrap();

            let real =
                find_plan_time_window_bound(&plan, current, ctx.clone(), query_engine.clone())
                    .await
                    .unwrap();
            assert_eq!(expected, real);

            let plan = sql_to_df_plan(ctx.clone(), query_engine.clone(), sql, false)
                .await
                .unwrap();
            let (col_name, lower, upper) = real;
            let new_sql = if lower.is_some() {
                let to_df_literal = |value| {
                    let value = Value::from(value);

                    value.try_to_scalar_value(&value.data_type()).unwrap()
                };
                let lower = to_df_literal(lower.unwrap());
                let upper = to_df_literal(upper.unwrap());
                let expr = col(&col_name)
                    .gt_eq(lit(lower))
                    .and(col(&col_name).lt_eq(lit(upper)));
                let mut add_filter = AddFilterRewriter::new(expr);
                let plan = plan.rewrite(&mut add_filter).unwrap().data;
                df_plan_to_sql(&plan).unwrap()
            } else {
                sql.to_string()
            };
            assert_eq!(expected_unparsed, new_sql);
        }
    }
}