flow/expr/
scalar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Scalar expressions.

use std::collections::{BTreeMap, BTreeSet};

use arrow::array::{make_array, ArrayData, ArrayRef};
use common_error::ext::BoxedError;
use datatypes::prelude::{ConcreteDataType, DataType};
use datatypes::value::Value;
use datatypes::vectors::{BooleanVector, Helper, VectorRef};
use hydroflow::lattices::cc_traits::Iter;
use itertools::Itertools;
use snafu::{ensure, OptionExt, ResultExt};

use crate::error::{
    DatafusionSnafu, Error, InvalidQuerySnafu, UnexpectedSnafu, UnsupportedTemporalFilterSnafu,
};
use crate::expr::error::{
    ArrowSnafu, DataTypeSnafu, EvalError, InvalidArgumentSnafu, OptimizeSnafu, TypeMismatchSnafu,
};
use crate::expr::func::{BinaryFunc, UnaryFunc, UnmaterializableFunc, VariadicFunc};
use crate::expr::{Batch, DfScalarFunction};
use crate::repr::ColumnType;
/// A scalar expression with a known type.
#[derive(Ord, PartialOrd, Clone, Debug, Eq, PartialEq, Hash)]
pub struct TypedExpr {
    /// The expression.
    pub expr: ScalarExpr,
    /// The type of the expression.
    pub typ: ColumnType,
}

impl TypedExpr {
    pub fn new(expr: ScalarExpr, typ: ColumnType) -> Self {
        Self { expr, typ }
    }
}

/// A scalar expression, which can be evaluated to a value.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum ScalarExpr {
    /// A column of the input row
    Column(usize),
    /// A literal value.
    /// Extra type info to know original type even when it is null
    Literal(Value, ConcreteDataType),
    /// A call to an unmaterializable function.
    ///
    /// These functions cannot be evaluated by `ScalarExpr::eval`. They must
    /// be transformed away by a higher layer.
    CallUnmaterializable(UnmaterializableFunc),
    CallUnary {
        func: UnaryFunc,
        expr: Box<ScalarExpr>,
    },
    CallBinary {
        func: BinaryFunc,
        expr1: Box<ScalarExpr>,
        expr2: Box<ScalarExpr>,
    },
    CallVariadic {
        func: VariadicFunc,
        exprs: Vec<ScalarExpr>,
    },
    CallDf {
        /// invariant: the input args set inside this [`DfScalarFunction`] is
        /// always col(0) to col(n-1) where n is the length of `expr`
        df_scalar_fn: DfScalarFunction,
        exprs: Vec<ScalarExpr>,
    },
    /// Conditionally evaluated expressions.
    ///
    /// It is important that `then` and `els` only be evaluated if
    /// `cond` is true or not, respectively. This is the only way
    /// users can guard execution (other logical operator do not
    /// short-circuit) and we need to preserve that.
    If {
        cond: Box<ScalarExpr>,
        then: Box<ScalarExpr>,
        els: Box<ScalarExpr>,
    },
}

impl ScalarExpr {
    pub fn with_type(self, typ: ColumnType) -> TypedExpr {
        TypedExpr::new(self, typ)
    }

    /// try to determine the type of the expression
    pub fn typ(&self, context: &[ColumnType]) -> Result<ColumnType, Error> {
        match self {
            ScalarExpr::Column(i) => context.get(*i).cloned().ok_or_else(|| {
                UnexpectedSnafu {
                    reason: format!("column index {} out of range of len={}", i, context.len()),
                }
                .build()
            }),
            ScalarExpr::Literal(_, typ) => Ok(ColumnType::new_nullable(typ.clone())),
            ScalarExpr::CallUnmaterializable(func) => {
                Ok(ColumnType::new_nullable(func.signature().output))
            }
            ScalarExpr::CallUnary { func, .. } => {
                Ok(ColumnType::new_nullable(func.signature().output))
            }
            ScalarExpr::CallBinary { func, .. } => {
                Ok(ColumnType::new_nullable(func.signature().output))
            }
            ScalarExpr::CallVariadic { func, .. } => {
                Ok(ColumnType::new_nullable(func.signature().output))
            }
            ScalarExpr::If { then, .. } => then.typ(context),
            ScalarExpr::CallDf { df_scalar_fn, .. } => {
                let arrow_typ = df_scalar_fn
                    .fn_impl
                    // TODO(discord9): get scheme from args instead?
                    .data_type(df_scalar_fn.df_schema.as_arrow())
                    .context({
                        DatafusionSnafu {
                            context: "Failed to get data type from datafusion scalar function",
                        }
                    })?;
                let typ = ConcreteDataType::try_from(&arrow_typ)
                    .map_err(BoxedError::new)
                    .context(crate::error::ExternalSnafu)?;
                Ok(ColumnType::new_nullable(typ))
            }
        }
    }
}

impl ScalarExpr {
    pub fn cast(self, typ: ConcreteDataType) -> Self {
        ScalarExpr::CallUnary {
            func: UnaryFunc::Cast(typ),
            expr: Box::new(self),
        }
    }

    /// apply optimization to the expression, like flatten variadic function
    pub fn optimize(&mut self) {
        self.flatten_variadic_fn();
    }

    /// Because Substrait's `And`/`Or` function is binary, but FlowPlan's
    /// `And`/`Or` function is variadic, we need to flatten the `And` function if multiple `And`/`Or` functions are nested.
    fn flatten_variadic_fn(&mut self) {
        if let ScalarExpr::CallVariadic { func, exprs } = self {
            let mut new_exprs = vec![];
            for expr in std::mem::take(exprs) {
                if let ScalarExpr::CallVariadic {
                    func: inner_func,
                    exprs: mut inner_exprs,
                } = expr
                {
                    if *func == inner_func {
                        for inner_expr in inner_exprs.iter_mut() {
                            inner_expr.flatten_variadic_fn();
                        }
                        new_exprs.extend(inner_exprs);
                    }
                } else {
                    new_exprs.push(expr);
                }
            }
            *exprs = new_exprs;
        }
    }
}

impl ScalarExpr {
    /// Call a unary function on this expression.
    pub fn call_unary(self, func: UnaryFunc) -> Self {
        ScalarExpr::CallUnary {
            func,
            expr: Box::new(self),
        }
    }

    /// Call a binary function on this expression and another.
    pub fn call_binary(self, other: Self, func: BinaryFunc) -> Self {
        ScalarExpr::CallBinary {
            func,
            expr1: Box::new(self),
            expr2: Box::new(other),
        }
    }

    pub fn eval_batch(&self, batch: &Batch) -> Result<VectorRef, EvalError> {
        match self {
            ScalarExpr::Column(i) => Ok(batch.batch()[*i].clone()),
            ScalarExpr::Literal(val, dt) => Ok(Helper::try_from_scalar_value(
                val.try_to_scalar_value(dt).context(DataTypeSnafu {
                    msg: "Failed to convert literal to scalar value",
                })?,
                batch.row_count(),
            )
            .context(DataTypeSnafu {
                msg: "Failed to convert scalar value to vector ref when parsing literal",
            })?),
            ScalarExpr::CallUnmaterializable(_) => OptimizeSnafu {
                reason: "Can't eval unmaterializable function",
            }
            .fail()?,
            ScalarExpr::CallUnary { func, expr } => func.eval_batch(batch, expr),
            ScalarExpr::CallBinary { func, expr1, expr2 } => func.eval_batch(batch, expr1, expr2),
            ScalarExpr::CallVariadic { func, exprs } => func.eval_batch(batch, exprs),
            ScalarExpr::CallDf {
                df_scalar_fn,
                exprs,
            } => df_scalar_fn.eval_batch(batch, exprs),
            ScalarExpr::If { cond, then, els } => Self::eval_if_then(batch, cond, then, els),
        }
    }

    /// NOTE: this if then eval impl assume all given expr are pure, and will not change the state of the world
    /// since it will evaluate both then and else branch and filter the result
    fn eval_if_then(
        batch: &Batch,
        cond: &ScalarExpr,
        then: &ScalarExpr,
        els: &ScalarExpr,
    ) -> Result<VectorRef, EvalError> {
        let conds = cond.eval_batch(batch)?;
        let bool_conds = conds
            .as_any()
            .downcast_ref::<BooleanVector>()
            .context({
                TypeMismatchSnafu {
                    expected: ConcreteDataType::boolean_datatype(),
                    actual: conds.data_type(),
                }
            })?
            .as_boolean_array();

        let indices = bool_conds
            .into_iter()
            .enumerate()
            .map(|(idx, b)| {
                (
                    match b {
                        Some(true) => 0,  // then branch vector
                        Some(false) => 1, // else branch vector
                        None => 2,        // null vector
                    },
                    idx,
                )
            })
            .collect_vec();

        let then_input_vec = then.eval_batch(batch)?;
        let else_input_vec = els.eval_batch(batch)?;

        ensure!(
            then_input_vec.data_type() == else_input_vec.data_type(),
            TypeMismatchSnafu {
                expected: then_input_vec.data_type(),
                actual: else_input_vec.data_type(),
            }
        );

        ensure!(
            then_input_vec.len() == else_input_vec.len() && then_input_vec.len() == batch.row_count(),
            InvalidArgumentSnafu {
                reason: format!(
                    "then and else branch must have the same length(found {} and {}) which equals input batch's row count(which is {})",
                    then_input_vec.len(),
                    else_input_vec.len(),
                    batch.row_count()
                )
            }
        );

        fn new_nulls(dt: &arrow_schema::DataType, len: usize) -> ArrayRef {
            let data = ArrayData::new_null(dt, len);
            make_array(data)
        }

        let null_input_vec = new_nulls(
            &then_input_vec.data_type().as_arrow_type(),
            batch.row_count(),
        );

        let interleave_values = vec![
            then_input_vec.to_arrow_array(),
            else_input_vec.to_arrow_array(),
            null_input_vec,
        ];
        let int_ref: Vec<_> = interleave_values.iter().map(|x| x.as_ref()).collect();

        let interleave_res_arr =
            arrow::compute::interleave(&int_ref, &indices).context(ArrowSnafu {
                context: "Failed to interleave output arrays",
            })?;
        let res_vec = Helper::try_into_vector(interleave_res_arr).context(DataTypeSnafu {
            msg: "Failed to convert arrow array to vector",
        })?;
        Ok(res_vec)
    }

    /// Eval this expression with the given values.
    ///
    /// TODO(discord9): add tests to make sure `eval_batch` is the same as `eval` in
    /// most cases
    pub fn eval(&self, values: &[Value]) -> Result<Value, EvalError> {
        match self {
            ScalarExpr::Column(index) => Ok(values[*index].clone()),
            ScalarExpr::Literal(row_res, _ty) => Ok(row_res.clone()),
            ScalarExpr::CallUnmaterializable(_) => OptimizeSnafu {
                reason: "Can't eval unmaterializable function".to_string(),
            }
            .fail(),
            ScalarExpr::CallUnary { func, expr } => func.eval(values, expr),
            ScalarExpr::CallBinary { func, expr1, expr2 } => func.eval(values, expr1, expr2),
            ScalarExpr::CallVariadic { func, exprs } => func.eval(values, exprs),
            ScalarExpr::If { cond, then, els } => match cond.eval(values) {
                Ok(Value::Boolean(true)) => then.eval(values),
                Ok(Value::Boolean(false)) => els.eval(values),
                _ => InvalidArgumentSnafu {
                    reason: "if condition must be boolean".to_string(),
                }
                .fail(),
            },
            ScalarExpr::CallDf {
                df_scalar_fn,
                exprs,
            } => df_scalar_fn.eval(values, exprs),
        }
    }

    /// Rewrites column indices with their value in `permutation`.
    ///
    /// This method is applicable even when `permutation` is not a
    /// strict permutation, and it only needs to have entries for
    /// each column referenced in `self`.
    pub fn permute(&mut self, permutation: &[usize]) -> Result<(), Error> {
        // check first so that we don't end up with a partially permuted expression
        ensure!(
            self.get_all_ref_columns()
                .into_iter()
                .all(|i| i < permutation.len()),
            InvalidQuerySnafu {
                reason: format!(
                    "permutation {:?} is not a valid permutation for expression {:?}",
                    permutation, self
                ),
            }
        );

        self.visit_mut_post_nolimit(&mut |e| {
            if let ScalarExpr::Column(old_i) = e {
                *old_i = permutation[*old_i];
            }
            Ok(())
        })?;
        Ok(())
    }

    /// Rewrites column indices with their value in `permutation`.
    ///
    /// This method is applicable even when `permutation` is not a
    /// strict permutation, and it only needs to have entries for
    /// each column referenced in `self`.
    pub fn permute_map(&mut self, permutation: &BTreeMap<usize, usize>) -> Result<(), Error> {
        // check first so that we don't end up with a partially permuted expression
        ensure!(
            self.get_all_ref_columns()
                .is_subset(&permutation.keys().cloned().collect()),
            InvalidQuerySnafu {
                reason: format!(
                    "permutation {:?} is not a valid permutation for expression {:?}",
                    permutation, self
                ),
            }
        );

        self.visit_mut_post_nolimit(&mut |e| {
            if let ScalarExpr::Column(old_i) = e {
                *old_i = permutation[old_i];
            }
            Ok(())
        })
    }

    /// Returns the set of columns that are referenced by `self`.
    pub fn get_all_ref_columns(&self) -> BTreeSet<usize> {
        let mut support = BTreeSet::new();
        self.visit_post_nolimit(&mut |e| {
            if let ScalarExpr::Column(i) = e {
                support.insert(*i);
            }
            Ok(())
        })
        .unwrap();
        support
    }

    /// Return true if the expression is a column reference.
    pub fn is_column(&self) -> bool {
        matches!(self, ScalarExpr::Column(_))
    }

    /// Cast the expression to a column reference if it is one.
    pub fn as_column(&self) -> Option<usize> {
        if let ScalarExpr::Column(i) = self {
            Some(*i)
        } else {
            None
        }
    }

    /// Cast the expression to a literal if it is one.
    pub fn as_literal(&self) -> Option<Value> {
        if let ScalarExpr::Literal(lit, _column_type) = self {
            Some(lit.clone())
        } else {
            None
        }
    }

    /// Return true if the expression is a literal.
    pub fn is_literal(&self) -> bool {
        matches!(self, ScalarExpr::Literal(..))
    }

    /// Return true if the expression is a literal true.
    pub fn is_literal_true(&self) -> bool {
        Some(Value::Boolean(true)) == self.as_literal()
    }

    /// Return true if the expression is a literal false.
    pub fn is_literal_false(&self) -> bool {
        Some(Value::Boolean(false)) == self.as_literal()
    }

    /// Return true if the expression is a literal null.
    pub fn is_literal_null(&self) -> bool {
        Some(Value::Null) == self.as_literal()
    }

    /// Build a literal null
    pub fn literal_null() -> Self {
        ScalarExpr::Literal(Value::Null, ConcreteDataType::null_datatype())
    }

    /// Build a literal from value and type
    pub fn literal(res: Value, typ: ConcreteDataType) -> Self {
        ScalarExpr::Literal(res, typ)
    }

    /// Build a literal false
    pub fn literal_false() -> Self {
        ScalarExpr::Literal(Value::Boolean(false), ConcreteDataType::boolean_datatype())
    }

    /// Build a literal true
    pub fn literal_true() -> Self {
        ScalarExpr::Literal(Value::Boolean(true), ConcreteDataType::boolean_datatype())
    }
}

impl ScalarExpr {
    /// visit post-order without stack call limit, but may cause stack overflow
    fn visit_post_nolimit<F>(&self, f: &mut F) -> Result<(), EvalError>
    where
        F: FnMut(&Self) -> Result<(), EvalError>,
    {
        self.visit_children(|e| e.visit_post_nolimit(f))?;
        f(self)
    }

    fn visit_children<F>(&self, mut f: F) -> Result<(), EvalError>
    where
        F: FnMut(&Self) -> Result<(), EvalError>,
    {
        match self {
            ScalarExpr::Column(_)
            | ScalarExpr::Literal(_, _)
            | ScalarExpr::CallUnmaterializable(_) => Ok(()),
            ScalarExpr::CallUnary { expr, .. } => f(expr),
            ScalarExpr::CallBinary { expr1, expr2, .. } => {
                f(expr1)?;
                f(expr2)
            }
            ScalarExpr::CallVariadic { exprs, .. } => {
                for expr in exprs {
                    f(expr)?;
                }
                Ok(())
            }
            ScalarExpr::If { cond, then, els } => {
                f(cond)?;
                f(then)?;
                f(els)
            }
            ScalarExpr::CallDf {
                df_scalar_fn: _,
                exprs,
            } => {
                for expr in exprs {
                    f(expr)?;
                }
                Ok(())
            }
        }
    }

    fn visit_mut_post_nolimit<F>(&mut self, f: &mut F) -> Result<(), Error>
    where
        F: FnMut(&mut Self) -> Result<(), Error>,
    {
        self.visit_mut_children(|e: &mut Self| e.visit_mut_post_nolimit(f))?;
        f(self)
    }

    fn visit_mut_children<F>(&mut self, mut f: F) -> Result<(), Error>
    where
        F: FnMut(&mut Self) -> Result<(), Error>,
    {
        match self {
            ScalarExpr::Column(_)
            | ScalarExpr::Literal(_, _)
            | ScalarExpr::CallUnmaterializable(_) => Ok(()),
            ScalarExpr::CallUnary { expr, .. } => f(expr),
            ScalarExpr::CallBinary { expr1, expr2, .. } => {
                f(expr1)?;
                f(expr2)
            }
            ScalarExpr::CallVariadic { exprs, .. } => {
                for expr in exprs {
                    f(expr)?;
                }
                Ok(())
            }
            ScalarExpr::If { cond, then, els } => {
                f(cond)?;
                f(then)?;
                f(els)
            }
            ScalarExpr::CallDf {
                df_scalar_fn: _,
                exprs,
            } => {
                for expr in exprs {
                    f(expr)?;
                }
                Ok(())
            }
        }
    }
}

impl ScalarExpr {
    /// if expr contains function `Now`
    pub fn contains_temporal(&self) -> bool {
        let mut contains = false;
        self.visit_post_nolimit(&mut |e| {
            if let ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now) = e {
                contains = true;
            }
            Ok(())
        })
        .unwrap();
        contains
    }

    /// extract lower or upper bound of `Now` for expr, where `lower bound <= expr < upper bound`
    ///
    /// returned bool indicates whether the bound is upper bound:
    ///
    /// false for lower bound, true for upper bound
    /// TODO(discord9): allow simple transform like `now() + a < b` to `now() < b - a`
    pub fn extract_bound(&self) -> Result<(Option<Self>, Option<Self>), Error> {
        let unsupported_err = |msg: &str| {
            UnsupportedTemporalFilterSnafu {
                reason: msg.to_string(),
            }
            .fail()
        };

        let Self::CallBinary {
            mut func,
            mut expr1,
            mut expr2,
        } = self.clone()
        else {
            return unsupported_err("Not a binary expression");
        };

        // TODO(discord9): support simple transform like `now() + a < b` to `now() < b - a`

        let expr1_is_now = *expr1 == ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now);
        let expr2_is_now = *expr2 == ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now);

        if !(expr1_is_now ^ expr2_is_now) {
            return unsupported_err("None of the sides of the comparison is `now()`");
        }

        if expr2_is_now {
            std::mem::swap(&mut expr1, &mut expr2);
            func = BinaryFunc::reverse_compare(&func)?;
        }

        let step = |expr: ScalarExpr| expr.call_unary(UnaryFunc::StepTimestamp);
        match func {
            // now == expr2 -> now <= expr2 && now < expr2 + 1
            BinaryFunc::Eq => Ok((Some(*expr2.clone()), Some(step(*expr2)))),
            // now < expr2 -> now < expr2
            BinaryFunc::Lt => Ok((None, Some(*expr2))),
            // now <= expr2 -> now < expr2 + 1
            BinaryFunc::Lte => Ok((None, Some(step(*expr2)))),
            // now > expr2 -> now >= expr2 + 1
            BinaryFunc::Gt => Ok((Some(step(*expr2)), None)),
            // now >= expr2 -> now >= expr2
            BinaryFunc::Gte => Ok((Some(*expr2), None)),
            _ => unreachable!("Already checked"),
        }
    }
}

#[cfg(test)]
mod test {
    use datatypes::vectors::{Int32Vector, Vector};
    use pretty_assertions::assert_eq;

    use super::*;

    #[test]
    fn test_extract_bound() {
        let test_list: [(ScalarExpr, Result<_, EvalError>); 5] = [
            // col(0) == now
            (
                ScalarExpr::CallBinary {
                    func: BinaryFunc::Eq,
                    expr1: Box::new(ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now)),
                    expr2: Box::new(ScalarExpr::Column(0)),
                },
                Ok((
                    Some(ScalarExpr::Column(0)),
                    Some(ScalarExpr::CallUnary {
                        func: UnaryFunc::StepTimestamp,
                        expr: Box::new(ScalarExpr::Column(0)),
                    }),
                )),
            ),
            // now < col(0)
            (
                ScalarExpr::CallBinary {
                    func: BinaryFunc::Lt,
                    expr1: Box::new(ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now)),
                    expr2: Box::new(ScalarExpr::Column(0)),
                },
                Ok((None, Some(ScalarExpr::Column(0)))),
            ),
            // now <= col(0)
            (
                ScalarExpr::CallBinary {
                    func: BinaryFunc::Lte,
                    expr1: Box::new(ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now)),
                    expr2: Box::new(ScalarExpr::Column(0)),
                },
                Ok((
                    None,
                    Some(ScalarExpr::CallUnary {
                        func: UnaryFunc::StepTimestamp,
                        expr: Box::new(ScalarExpr::Column(0)),
                    }),
                )),
            ),
            // now > col(0) -> now >= col(0) + 1
            (
                ScalarExpr::CallBinary {
                    func: BinaryFunc::Gt,
                    expr1: Box::new(ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now)),
                    expr2: Box::new(ScalarExpr::Column(0)),
                },
                Ok((
                    Some(ScalarExpr::CallUnary {
                        func: UnaryFunc::StepTimestamp,
                        expr: Box::new(ScalarExpr::Column(0)),
                    }),
                    None,
                )),
            ),
            // now >= col(0)
            (
                ScalarExpr::CallBinary {
                    func: BinaryFunc::Gte,
                    expr1: Box::new(ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now)),
                    expr2: Box::new(ScalarExpr::Column(0)),
                },
                Ok((Some(ScalarExpr::Column(0)), None)),
            ),
        ];
        for (expr, expected) in test_list.into_iter() {
            let actual = expr.extract_bound();
            // EvalError is not Eq, so we need to compare the error message
            match (actual, expected) {
                (Ok(l), Ok(r)) => assert_eq!(l, r),
                (l, r) => panic!("expected: {:?}, actual: {:?}", r, l),
            }
        }
    }

    #[test]
    fn test_bad_permute() {
        let mut expr = ScalarExpr::Column(4);
        let permutation = vec![1, 2, 3];
        let res = expr.permute(&permutation);
        assert!(matches!(res, Err(Error::InvalidQuery { .. })));

        let mut expr = ScalarExpr::Column(0);
        let permute_map = BTreeMap::from([(1, 2), (3, 4)]);
        let res = expr.permute_map(&permute_map);
        assert!(matches!(res, Err(Error::InvalidQuery { .. })));
    }

    #[test]
    fn test_eval_batch_if_then() {
        // TODO(discord9): add more tests
        {
            let expr = ScalarExpr::If {
                cond: Box::new(ScalarExpr::Column(0).call_binary(
                    ScalarExpr::literal(Value::from(0), ConcreteDataType::int32_datatype()),
                    BinaryFunc::Eq,
                )),
                then: Box::new(ScalarExpr::literal(
                    Value::from(42),
                    ConcreteDataType::int32_datatype(),
                )),
                els: Box::new(ScalarExpr::literal(
                    Value::from(37),
                    ConcreteDataType::int32_datatype(),
                )),
            };
            let raw = vec![
                None,
                Some(0),
                Some(1),
                None,
                None,
                Some(0),
                Some(0),
                Some(1),
                Some(1),
            ];
            let raw_len = raw.len();
            let vectors = vec![Int32Vector::from(raw).slice(0, raw_len)];

            let batch = Batch::try_new(vectors, raw_len).unwrap();
            let expected = Int32Vector::from(vec![
                None,
                Some(42),
                Some(37),
                None,
                None,
                Some(42),
                Some(42),
                Some(37),
                Some(37),
            ])
            .slice(0, raw_len);
            assert_eq!(expr.eval_batch(&batch).unwrap(), expected);

            let raw = vec![Some(0)];
            let raw_len = raw.len();
            let vectors = vec![Int32Vector::from(raw).slice(0, raw_len)];

            let batch = Batch::try_new(vectors, raw_len).unwrap();
            let expected = Int32Vector::from(vec![Some(42)]).slice(0, raw_len);
            assert_eq!(expr.eval_batch(&batch).unwrap(), expected);

            let raw: Vec<Option<i32>> = vec![];
            let raw_len = raw.len();
            let vectors = vec![Int32Vector::from(raw).slice(0, raw_len)];

            let batch = Batch::try_new(vectors, raw_len).unwrap();
            let expected = Int32Vector::from(vec![]).slice(0, raw_len);
            assert_eq!(expr.eval_batch(&batch).unwrap(), expected);
        }
    }
}