flow/expr/
linear.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! define MapFilterProject which is a compound operator that can be applied row-by-row.

use std::collections::{BTreeMap, BTreeSet};

use arrow::array::BooleanArray;
use arrow::buffer::BooleanBuffer;
use arrow::compute::FilterBuilder;
use common_telemetry::trace;
use datatypes::prelude::ConcreteDataType;
use datatypes::value::Value;
use datatypes::vectors::{BooleanVector, Helper};
use itertools::Itertools;
use snafu::{ensure, OptionExt, ResultExt};

use crate::error::{Error, InvalidQuerySnafu};
use crate::expr::error::{ArrowSnafu, DataTypeSnafu, EvalError, InternalSnafu, TypeMismatchSnafu};
use crate::expr::{Batch, InvalidArgumentSnafu, ScalarExpr};
use crate::repr::{self, value_to_internal_ts, Diff, Row};

/// A compound operator that can be applied row-by-row.
///
/// In practice, this operator is a sequence of map, filter, and project in arbitrary order,
/// which can and is stored by reordering the sequence's
/// apply order to a `map` first, `filter` second and `project` third order.
///
/// input is a row(a sequence of values), which is also being used for store intermediate results,
/// like `map` operator can append new columns to the row according to it's expressions,
/// `filter` operator decide whether this entire row can even be output by decide whether the row satisfy the predicates,
/// `project` operator decide which columns of the row should be output.
///
/// This operator integrates the map, filter, and project operators.
/// It applies a sequences of map expressions, which are allowed to
/// refer to previous expressions, interleaved with predicates which
/// must be satisfied for an output to be produced. If all predicates
/// evaluate to `Value::Boolean(True)` the data at the identified columns are
/// collected and produced as output in a packed `Row`.
///
/// This operator is a "builder" and its contents may contain expressions
/// that are not yet executable. For example, it may contain temporal
/// expressions in `self.expressions`, even though this is not something
/// we can directly evaluate. The plan creation methods will defensively
/// ensure that the right thing happens.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct MapFilterProject {
    /// A sequence of expressions that should be appended to the row.
    ///
    /// Many of these expressions may not be produced in the output,
    /// and may only be present as common subexpressions.
    pub expressions: Vec<ScalarExpr>,
    /// Expressions that must evaluate to `Datum::True` for the output
    /// row to be produced.
    ///
    /// Each entry is prepended with a column identifier indicating
    /// the column *before* which the predicate should first be applied.
    /// Most commonly this would be one plus the largest column identifier
    /// in the predicate's referred columns, but it could be larger to implement
    /// guarded evaluation of predicates.
    /// Put it in another word, the first element of the tuple means
    /// the predicates can't be evaluated until that number of columns is formed.
    ///
    /// This list should be sorted by the first field.
    pub predicates: Vec<(usize, ScalarExpr)>,
    /// A sequence of column identifiers whose data form the output row.
    pub projection: Vec<usize>,
    /// The expected number of input columns.
    ///
    /// This is needed to ensure correct identification of newly formed
    /// columns in the output.
    pub input_arity: usize,
}

impl MapFilterProject {
    /// Create a no-op operator for an input of a supplied arity.
    pub fn new(input_arity: usize) -> Self {
        Self {
            expressions: Vec::new(),
            predicates: Vec::new(),
            projection: (0..input_arity).collect(),
            input_arity,
        }
    }

    pub fn get_nth_expr(&self, n: usize) -> Option<ScalarExpr> {
        let idx = *self.projection.get(n)?;
        if idx < self.input_arity {
            Some(ScalarExpr::Column(idx))
        } else {
            // find direct ref to input's expr

            let mut expr = self.expressions.get(idx - self.input_arity)?;
            loop {
                match expr {
                    ScalarExpr::Column(prev) => {
                        if *prev < self.input_arity {
                            return Some(ScalarExpr::Column(*prev));
                        } else {
                            expr = self.expressions.get(*prev - self.input_arity)?;
                            continue;
                        }
                    }
                    _ => return Some(expr.clone()),
                }
            }
        }
    }

    /// The number of columns expected in the output row.
    pub fn output_arity(&self) -> usize {
        self.projection.len()
    }

    /// Given two mfps, return an mfp that applies one
    /// followed by the other.
    /// Note that the arguments are in the opposite order
    /// from how function composition is usually written in mathematics.
    pub fn compose(before: Self, after: Self) -> Result<Self, Error> {
        let (m, f, p) = after.into_map_filter_project();
        before.map(m)?.filter(f)?.project(p)
    }

    /// True if the operator describes the identity transformation.
    pub fn is_identity(&self) -> bool {
        self.expressions.is_empty()
            && self.predicates.is_empty()
            // identity if projection is the identity permutation
            && self.projection.len() == self.input_arity
            && self.projection.iter().enumerate().all(|(i, p)| i == *p)
    }

    /// Retain only the indicated columns in the presented order.
    ///
    /// i.e. before: `self.projection = [1, 2, 0], columns = [1, 0]`
    /// ```mermaid
    /// flowchart TD
    /// col-0
    /// col-1
    /// col-2
    /// projection --> |0|col-1
    /// projection --> |1|col-2
    /// projection --> |2|col-0
    /// ```
    ///
    /// after: `self.projection = [2, 1]`
    /// ```mermaid
    /// flowchart TD
    /// col-0
    /// col-1
    /// col-2
    /// project("project:[1,2,0]")
    /// project
    /// project -->|0| col-1
    /// project -->|1| col-2
    /// project -->|2| col-0
    /// new_project("apply new project:[1,0]")
    /// new_project -->|0| col-2
    /// new_project -->|1| col-1
    /// ```
    pub fn project<I>(mut self, columns: I) -> Result<Self, Error>
    where
        I: IntoIterator<Item = usize> + std::fmt::Debug,
    {
        self.projection = columns
            .into_iter()
            .map(|c| self.projection.get(c).cloned().ok_or(c))
            .collect::<Result<Vec<_>, _>>()
            .map_err(|c| {
                InvalidQuerySnafu {
                    reason: format!(
                        "column index {} out of range, expected at most {} columns",
                        c,
                        self.projection.len()
                    ),
                }
                .build()
            })?;
        Ok(self)
    }

    /// Retain only rows satisfying these predicates.
    ///
    /// This method introduces predicates as eagerly as they can be evaluated,
    /// which may not be desired for predicates that may cause exceptions.
    /// If fine manipulation is required, the predicates can be added manually.
    ///
    /// simply added to the end of the predicates list
    ///
    /// while paying attention to column references maintained by `self.projection`
    ///
    /// so `self.projection = [1, 2, 0], filter = [0]+[1]>0`:
    /// becomes:
    /// ```mermaid
    /// flowchart TD
    /// col-0
    /// col-1
    /// col-2
    /// project("first project:[1,2,0]")
    /// project
    /// project -->|0| col-1
    /// project -->|1| col-2
    /// project -->|2| col-0
    /// filter("then filter:[0]+[1]>0")
    /// filter -->|0| col-1
    /// filter --> |1| col-2
    /// ```
    pub fn filter<I>(mut self, predicates: I) -> Result<Self, Error>
    where
        I: IntoIterator<Item = ScalarExpr>,
    {
        for mut predicate in predicates {
            // Correct column references.
            predicate.permute(&self.projection[..])?;

            // Validate column references.
            let referred_columns = predicate.get_all_ref_columns();
            for c in referred_columns.iter() {
                // current row len include input columns and previous number of expressions
                let cur_row_len = self.input_arity + self.expressions.len();
                ensure!(
                    *c < cur_row_len,
                    InvalidQuerySnafu {
                        reason: format!(
                            "column index {} out of range, expected at most {} columns",
                            c, cur_row_len
                        )
                    }
                );
            }

            // Insert predicate as eagerly as it can be evaluated:
            // just after the largest column in its support is formed.
            let max_support = referred_columns
                .into_iter()
                .max()
                .map(|c| c + 1)
                .unwrap_or(0);
            self.predicates.push((max_support, predicate))
        }
        // Stable sort predicates by position at which they take effect.
        self.predicates
            .sort_by_key(|(position, _predicate)| *position);
        Ok(self)
    }

    /// Append the result of evaluating expressions to each row.
    ///
    /// simply append `expressions` to `self.expressions`
    ///
    /// while paying attention to column references maintained by `self.projection`
    ///
    /// hence, before apply map with a previously non-trivial projection would be like:
    /// before:
    /// ```mermaid
    /// flowchart TD
    /// col-0
    /// col-1
    /// col-2
    /// projection --> |0|col-1
    /// projection --> |1|col-2
    /// projection --> |2|col-0
    /// ```
    /// after apply map:
    /// ```mermaid
    /// flowchart TD
    /// col-0
    /// col-1
    /// col-2
    /// project("project:[1,2,0]")
    /// project
    /// project -->|0| col-1
    /// project -->|1| col-2
    /// project -->|2| col-0
    /// map("map:[0]/[1]/[2]")
    /// map -->|0|col-1
    /// map -->|1|col-2
    /// map -->|2|col-0
    /// ```
    pub fn map<I>(mut self, expressions: I) -> Result<Self, Error>
    where
        I: IntoIterator<Item = ScalarExpr>,
    {
        for mut expression in expressions {
            // Correct column references.
            expression.permute(&self.projection[..])?;

            // Validate column references.
            for c in expression.get_all_ref_columns().into_iter() {
                // current row len include input columns and previous number of expressions
                let current_row_len = self.input_arity + self.expressions.len();
                ensure!(
                    c < current_row_len,
                    InvalidQuerySnafu {
                        reason: format!(
                            "column index {} out of range, expected at most {} columns",
                            c, current_row_len
                        )
                    }
                );
            }

            // Introduce expression and produce as output.
            self.expressions.push(expression);
            // Expression by default is projected to output.
            let cur_expr_col_num = self.input_arity + self.expressions.len() - 1;
            self.projection.push(cur_expr_col_num);
        }

        Ok(self)
    }

    /// Like [`MapFilterProject::as_map_filter_project`], but consumes `self` rather than cloning.
    pub fn into_map_filter_project(self) -> (Vec<ScalarExpr>, Vec<ScalarExpr>, Vec<usize>) {
        let predicates = self
            .predicates
            .into_iter()
            .map(|(_pos, predicate)| predicate)
            .collect();
        (self.expressions, predicates, self.projection)
    }

    /// As the arguments to `Map`, `Filter`, and `Project` operators.
    ///
    /// In principle, this operator can be implemented as a sequence of
    /// more elemental operators, likely less efficiently.
    pub fn as_map_filter_project(&self) -> (Vec<ScalarExpr>, Vec<ScalarExpr>, Vec<usize>) {
        self.clone().into_map_filter_project()
    }
}

impl MapFilterProject {
    /// Convert the `MapFilterProject` into a safe evaluation plan. Marking it safe to evaluate.
    pub fn into_safe(self) -> SafeMfpPlan {
        SafeMfpPlan { mfp: self }
    }

    /// Optimize the `MapFilterProject` in place.
    pub fn optimize(&mut self) {
        // TODO(discord9): optimize
    }
    /// get the mapping of old columns to new columns after the mfp
    pub fn get_old_to_new_mapping(&self) -> BTreeMap<usize, usize> {
        BTreeMap::from_iter(
            self.projection
                .clone()
                .into_iter()
                .enumerate()
                .map(|(new, old)| {
                    // `projection` give the new -> old mapping
                    let mut old = old;
                    // trace back to the original column
                    // since there maybe indirect ref to old columns like
                    // col 2 <- expr=col(2) at pos col 4 <- expr=col(4) at pos col 6
                    // ideally such indirect ref should be optimize away
                    // TODO(discord9): refactor this after impl `optimize()`
                    while let Some(ScalarExpr::Column(prev)) = if old >= self.input_arity {
                        // get the correspond expr if not a original column
                        self.expressions.get(old - self.input_arity)
                    } else {
                        // we don't care about non column ref case since only need old to new column mapping
                        // in which case, the old->new mapping remain the same
                        None
                    } {
                        old = *prev;
                        if old < self.input_arity {
                            break;
                        }
                    }
                    (old, new)
                }),
        )
    }

    /// Lists input columns whose values are used in outputs.
    ///
    /// It is entirely appropriate to determine the demand of an instance
    /// and then both apply a projection to the subject of the instance and
    /// `self.permute` this instance.
    pub fn demand(&self) -> BTreeSet<usize> {
        let mut demanded = BTreeSet::new();
        // first, get all columns referenced by predicates
        for (_index, pred) in self.predicates.iter() {
            demanded.extend(pred.get_all_ref_columns());
        }
        // then, get columns referenced by projection which is direct output
        demanded.extend(self.projection.iter().cloned());

        // check every expressions, if a expression is contained in demanded, then all columns it referenced should be added to demanded
        for index in (0..self.expressions.len()).rev() {
            if demanded.contains(&(self.input_arity + index)) {
                demanded.extend(self.expressions[index].get_all_ref_columns());
            }
        }

        // only keep demanded columns that are in input
        demanded.retain(|col| col < &self.input_arity);
        demanded
    }

    /// Update input column references, due to an input projection or permutation.
    ///
    /// The `shuffle` argument remaps expected column identifiers to new locations,
    /// with the expectation that `shuffle` describes all input columns, and so the
    /// intermediate results will be able to start at position `shuffle.len()`.
    ///
    /// The supplied `shuffle` may not list columns that are not "demanded" by the
    /// instance, and so we should ensure that `self` is optimized to not reference
    /// columns that are not demanded.
    pub fn permute(
        &mut self,
        mut shuffle: BTreeMap<usize, usize>,
        new_input_arity: usize,
    ) -> Result<(), Error> {
        // check shuffle is valid
        let demand = self.demand();
        for d in demand {
            ensure!(
                shuffle.contains_key(&d),
                InvalidQuerySnafu {
                    reason: format!(
                        "Demanded column {} is not in shuffle's keys: {:?}",
                        d,
                        shuffle.keys()
                    )
                }
            );
        }
        ensure!(
            shuffle.len() <= new_input_arity,
            InvalidQuerySnafu {
                reason: format!(
                    "shuffle's length {} is greater than new_input_arity {}",
                    shuffle.len(),
                    self.input_arity
                )
            }
        );

        // decompose self into map, filter, project for ease of manipulation
        let (mut map, mut filter, mut project) = self.as_map_filter_project();
        for index in 0..map.len() {
            // Intermediate columns are just shifted.
            shuffle.insert(self.input_arity + index, new_input_arity + index);
        }

        for expr in map.iter_mut() {
            expr.permute_map(&shuffle)?;
        }
        for pred in filter.iter_mut() {
            pred.permute_map(&shuffle)?;
        }
        let new_row_len = new_input_arity + map.len();
        for proj in project.iter_mut() {
            ensure!(
                shuffle[proj] < new_row_len,
                InvalidQuerySnafu {
                    reason: format!(
                        "shuffled column index {} out of range, expected at most {} columns",
                        shuffle[proj], new_row_len
                    )
                }
            );
            *proj = shuffle[proj];
        }
        *self = Self::new(new_input_arity)
            .map(map)?
            .filter(filter)?
            .project(project)?;
        Ok(())
    }
}

/// A wrapper type which indicates it is safe to simply evaluate all expressions.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct SafeMfpPlan {
    /// the inner `MapFilterProject` that is safe to evaluate.
    pub(crate) mfp: MapFilterProject,
}

impl SafeMfpPlan {
    /// See [`MapFilterProject::permute`].
    pub fn permute(&mut self, map: BTreeMap<usize, usize>, new_arity: usize) -> Result<(), Error> {
        self.mfp.permute(map, new_arity)
    }

    /// similar to [`MapFilterProject::evaluate_into`], just in batch, and rows that don't pass the predicates are not included in the output.
    ///
    /// so it's not guaranteed that the output will have the same number of rows as the input.
    pub fn eval_batch_into(&self, batch: &mut Batch) -> Result<Batch, EvalError> {
        ensure!(
            batch.column_count() == self.mfp.input_arity,
            InvalidArgumentSnafu {
                reason: format!(
                    "batch column length {} is not equal to input_arity {}",
                    batch.column_count(),
                    self.mfp.input_arity
                ),
            }
        );

        let passed_predicates = self.eval_batch_inner(batch)?;
        let filter = FilterBuilder::new(passed_predicates.as_boolean_array());
        let pred = filter.build();
        let mut result = vec![];
        for col in batch.batch() {
            let filtered = pred
                .filter(col.to_arrow_array().as_ref())
                .with_context(|_| ArrowSnafu {
                    context: format!("failed to filter column for mfp operator {:?}", self),
                })?;
            result.push(Helper::try_into_vector(filtered).context(DataTypeSnafu {
                msg: "Failed to convert arrow array to vector",
            })?);
        }
        let projected = self
            .mfp
            .projection
            .iter()
            .map(|c| result[*c].clone())
            .collect_vec();
        let row_count = pred.count();

        Batch::try_new(projected, row_count)
    }

    /// similar to [`MapFilterProject::evaluate_into`], just in batch.
    pub fn eval_batch_inner(&self, batch: &mut Batch) -> Result<BooleanVector, EvalError> {
        // mark the columns that have been evaluated and appended to the `batch`
        let mut expression = 0;
        // preds default to true and will be updated as we evaluate each predicate
        let buf = BooleanBuffer::new_set(batch.row_count());
        let arr = BooleanArray::new(buf, None);
        let mut all_preds = BooleanVector::from(arr);

        // to compute predicate, need to first compute all expressions used in predicates
        for (support, predicate) in self.mfp.predicates.iter() {
            while self.mfp.input_arity + expression < *support {
                let expr_eval = self.mfp.expressions[expression].eval_batch(batch)?;
                batch.batch_mut().push(expr_eval);
                expression += 1;
            }
            let pred_vec = predicate.eval_batch(batch)?;
            let pred_arr = pred_vec.to_arrow_array();
            let pred_arr = pred_arr.as_any().downcast_ref::<BooleanArray>().context({
                TypeMismatchSnafu {
                    expected: ConcreteDataType::boolean_datatype(),
                    actual: pred_vec.data_type(),
                }
            })?;
            let all_arr = all_preds.as_boolean_array();
            let res_arr = arrow::compute::and(all_arr, pred_arr).context(ArrowSnafu {
                context: format!("failed to compute predicate for mfp operator {:?}", self),
            })?;
            all_preds = BooleanVector::from(res_arr);
        }

        // while evaluated expressions are less than total expressions, keep evaluating
        while expression < self.mfp.expressions.len() {
            let expr_eval = self.mfp.expressions[expression].eval_batch(batch)?;
            batch.batch_mut().push(expr_eval);
            expression += 1;
        }

        Ok(all_preds)
    }

    /// Evaluates the linear operator on a supplied list of datums.
    ///
    /// The arguments are the initial datums associated with the row,
    /// and an appropriately lifetimed arena for temporary allocations
    /// needed by scalar evaluation.
    ///
    /// An `Ok` result will either be `None` if any predicate did not
    /// evaluate to `Value::Boolean(true)`, or the values of the columns listed
    /// by `self.projection` if all predicates passed. If an error
    /// occurs in the evaluation it is returned as an `Err` variant.
    /// As the evaluation exits early with failed predicates, it may
    /// miss some errors that would occur later in evaluation.
    ///
    /// The `row` is not cleared first, but emptied if the function
    /// returns `Ok(Some(row)).
    #[inline(always)]
    pub fn evaluate_into(
        &self,
        values: &mut Vec<Value>,
        row_buf: &mut Row,
    ) -> Result<Option<Row>, EvalError> {
        ensure!(
            values.len() == self.mfp.input_arity,
            InvalidArgumentSnafu {
                reason: format!(
                    "values length {} is not equal to input_arity {}",
                    values.len(),
                    self.mfp.input_arity
                ),
            }
        );
        let passed_predicates = self.evaluate_inner(values)?;

        if !passed_predicates {
            Ok(None)
        } else {
            row_buf.clear();
            row_buf.extend(self.mfp.projection.iter().map(|c| values[*c].clone()));
            Ok(Some(row_buf.clone()))
        }
    }

    /// Populates `values` with `self.expressions` and tests `self.predicates`.
    ///
    /// This does not apply `self.projection`, which is up to the calling method.
    pub fn evaluate_inner(&self, values: &mut Vec<Value>) -> Result<bool, EvalError> {
        let mut expression = 0;
        for (support, predicate) in self.mfp.predicates.iter() {
            while self.mfp.input_arity + expression < *support {
                values.push(self.mfp.expressions[expression].eval(&values[..])?);
                expression += 1;
            }
            if predicate.eval(&values[..])? != Value::Boolean(true) {
                return Ok(false);
            }
        }
        // while evaluated expressions are less than total expressions, keep evaluating
        while expression < self.mfp.expressions.len() {
            values.push(self.mfp.expressions[expression].eval(&values[..])?);
            expression += 1;
        }
        Ok(true)
    }
}

impl std::ops::Deref for SafeMfpPlan {
    type Target = MapFilterProject;
    fn deref(&self) -> &Self::Target {
        &self.mfp
    }
}

/// Predicates partitioned into temporal and non-temporal.
///
/// Temporal predicates require some recognition to determine their
/// structure, and it is best to do that once and re-use the results.
///
/// There are restrictions on the temporal predicates we currently support.
/// They must directly constrain `MzNow` from below or above,
/// by expressions that do not themselves contain `MzNow`.
/// Conjunctions of such constraints are also ok.
#[derive(Clone, Debug, PartialEq)]
pub struct MfpPlan {
    /// Normal predicates to evaluate on `&[Datum]` and expect `Ok(Datum::True)`.
    pub(crate) mfp: SafeMfpPlan,
    /// TODO(discord9): impl temporal filter later
    /// Expressions that when evaluated lower-bound `MzNow`.
    pub(crate) lower_bounds: Vec<ScalarExpr>,
    /// Expressions that when evaluated upper-bound `MzNow`.
    pub(crate) upper_bounds: Vec<ScalarExpr>,
}

impl MfpPlan {
    /// Indicates if the `MfpPlan` contains temporal predicates. That is have outputs that may occur in future.
    pub fn is_temporal(&self) -> bool {
        !self.lower_bounds.is_empty() || !self.upper_bounds.is_empty()
    }
    /// find `now` in `predicates` and put them into lower/upper temporal bounds for temporal filter to use
    pub fn create_from(mut mfp: MapFilterProject) -> Result<Self, Error> {
        let mut lower_bounds = Vec::new();
        let mut upper_bounds = Vec::new();

        let mut temporal = Vec::new();

        // Optimize, to ensure that temporal predicates are move in to `mfp.predicates`.
        mfp.optimize();

        mfp.predicates.retain(|(_position, predicate)| {
            if predicate.contains_temporal() {
                temporal.push(predicate.clone());
                false
            } else {
                true
            }
        });

        for predicate in temporal {
            let (lower, upper) = predicate.extract_bound()?;
            lower_bounds.extend(lower);
            upper_bounds.extend(upper);
        }
        Ok(Self {
            mfp: SafeMfpPlan { mfp },
            lower_bounds,
            upper_bounds,
        })
    }

    /// Indicates if the planned `MapFilterProject` emits exactly its inputs as outputs.
    pub fn is_identity(&self) -> bool {
        self.mfp.mfp.is_identity() && self.lower_bounds.is_empty() && self.upper_bounds.is_empty()
    }

    /// if `lower_bound <= sys_time < upper_bound`, return `[(data, sys_time, +1), (data, min_upper_bound, -1)]`
    ///
    /// else if `sys_time < lower_bound`, return `[(data, lower_bound, +1), (data, min_upper_bound, -1)]`
    ///
    /// else if `sys_time >= upper_bound`, return `[None, None]`
    ///
    /// if eval error appeal in any of those process, corresponding result will be `Err`
    pub fn evaluate<E: From<EvalError>>(
        &self,
        values: &mut Vec<Value>,
        sys_time: repr::Timestamp,
        diff: Diff,
    ) -> impl Iterator<Item = Result<(Row, repr::Timestamp, Diff), (E, repr::Timestamp, Diff)>>
    {
        match self.mfp.evaluate_inner(values) {
            Err(e) => {
                return Some(Err((e.into(), sys_time, diff)))
                    .into_iter()
                    .chain(None);
            }
            Ok(true) => {}
            Ok(false) => {
                return None.into_iter().chain(None);
            }
        }

        let mut lower_bound = sys_time;
        let mut upper_bound = None;

        // Track whether we have seen a null in either bound, as this should
        // prevent the record from being produced at any time.
        let mut null_eval = false;
        let ret_err = |e: EvalError| {
            Some(Err((e.into(), sys_time, diff)))
                .into_iter()
                .chain(None)
        };
        for l in self.lower_bounds.iter() {
            match l.eval(values) {
                Ok(v) => {
                    if v.is_null() {
                        null_eval = true;
                        continue;
                    }
                    match value_to_internal_ts(v) {
                        Ok(ts) => lower_bound = lower_bound.max(ts),
                        Err(e) => return ret_err(e),
                    }
                }
                Err(e) => return ret_err(e),
            };
        }

        for u in self.upper_bounds.iter() {
            if upper_bound != Some(lower_bound) {
                match u.eval(values) {
                    Err(e) => return ret_err(e),
                    Ok(val) => {
                        if val.is_null() {
                            null_eval = true;
                            continue;
                        }
                        let ts = match value_to_internal_ts(val) {
                            Ok(ts) => ts,
                            Err(e) => return ret_err(e),
                        };
                        if let Some(upper) = upper_bound {
                            upper_bound = Some(upper.min(ts));
                        } else {
                            upper_bound = Some(ts);
                        }
                        // Force the upper bound to be at least the lower
                        // bound.
                        if upper_bound.is_some() && upper_bound < Some(lower_bound) {
                            upper_bound = Some(lower_bound);
                        }
                    }
                }
            }
        }

        if Some(lower_bound) != upper_bound && !null_eval {
            if self.mfp.mfp.projection.iter().any(|c| values.len() <= *c) {
                trace!("values={:?}, mfp={:?}", &values, &self.mfp.mfp);
                let err = InternalSnafu {
                    reason: format!(
                        "Index out of bound for mfp={:?} and values={:?}",
                        &self.mfp.mfp, &values
                    ),
                }
                .build();
                return ret_err(err);
            }
            // safety: already checked that `projection` is not out of bound
            let res_row = Row::pack(self.mfp.mfp.projection.iter().map(|c| values[*c].clone()));
            let upper_opt =
                upper_bound.map(|upper_bound| Ok((res_row.clone(), upper_bound, -diff)));
            // if diff==-1, the `upper_opt` will cancel the future `-1` inserted before by previous diff==1 row
            let lower = Some(Ok((res_row, lower_bound, diff)));

            lower.into_iter().chain(upper_opt)
        } else {
            None.into_iter().chain(None)
        }
    }
}

#[cfg(test)]
mod test {
    use std::sync::Arc;

    use datatypes::data_type::ConcreteDataType;
    use datatypes::vectors::{Int32Vector, Int64Vector};
    use pretty_assertions::assert_eq;

    use super::*;
    use crate::expr::{BinaryFunc, UnaryFunc, UnmaterializableFunc};

    #[test]
    fn test_mfp_with_time() {
        use crate::expr::func::BinaryFunc;
        let lte_now = ScalarExpr::Column(0).call_binary(
            ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now),
            BinaryFunc::Lte,
        );
        assert!(lte_now.contains_temporal());

        let gt_now_minus_two = ScalarExpr::Column(0)
            .call_binary(
                ScalarExpr::Literal(Value::from(2i64), ConcreteDataType::int64_datatype()),
                BinaryFunc::AddInt64,
            )
            .call_binary(
                ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now),
                BinaryFunc::Gt,
            );
        assert!(gt_now_minus_two.contains_temporal());

        let mfp = MapFilterProject::new(3)
            .filter(vec![
                // col(0) <= now()
                lte_now,
                // col(0) + 2 > now()
                gt_now_minus_two,
            ])
            .unwrap()
            .project(vec![0])
            .unwrap();

        let mfp = MfpPlan::create_from(mfp).unwrap();
        let expected = vec![
            (
                0,
                vec![
                    (Row::new(vec![Value::from(4i64)]), 4, 1),
                    (Row::new(vec![Value::from(4i64)]), 6, -1),
                ],
            ),
            (
                5,
                vec![
                    (Row::new(vec![Value::from(4i64)]), 5, 1),
                    (Row::new(vec![Value::from(4i64)]), 6, -1),
                ],
            ),
            (10, vec![]),
        ];
        for (sys_time, expected) in expected {
            let mut values = vec![Value::from(4i64), Value::from(2i64), Value::from(3i64)];
            let ret = mfp
                .evaluate::<EvalError>(&mut values, sys_time, 1)
                .collect::<Result<Vec<_>, _>>()
                .unwrap();
            assert_eq!(ret, expected);
        }
    }

    #[test]
    fn test_mfp() {
        use crate::expr::func::BinaryFunc;
        let mfp = MapFilterProject::new(3)
            .map(vec![
                ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt),
                ScalarExpr::Column(1).call_binary(ScalarExpr::Column(2), BinaryFunc::Lt),
            ])
            .unwrap()
            .project(vec![3, 4])
            .unwrap();
        assert!(!mfp.is_identity());
        let mfp = MapFilterProject::compose(mfp, MapFilterProject::new(2)).unwrap();
        {
            let mfp_0 = mfp.as_map_filter_project();
            let same = MapFilterProject::new(3)
                .map(mfp_0.0)
                .unwrap()
                .filter(mfp_0.1)
                .unwrap()
                .project(mfp_0.2)
                .unwrap();
            assert_eq!(mfp, same);
        }
        assert_eq!(mfp.demand().len(), 3);
        let mut mfp = mfp;
        mfp.permute(BTreeMap::from([(0, 2), (2, 0), (1, 1)]), 3)
            .unwrap();
        assert_eq!(
            mfp,
            MapFilterProject::new(3)
                .map(vec![
                    ScalarExpr::Column(2).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt),
                    ScalarExpr::Column(1).call_binary(ScalarExpr::Column(0), BinaryFunc::Lt),
                ])
                .unwrap()
                .project(vec![3, 4])
                .unwrap()
        );
        let safe_mfp = SafeMfpPlan { mfp };
        let mut values = vec![Value::from(4), Value::from(2), Value::from(3)];
        let ret = safe_mfp
            .evaluate_into(&mut values, &mut Row::empty())
            .unwrap()
            .unwrap();
        assert_eq!(ret, Row::pack(vec![Value::from(false), Value::from(true)]));
        let ty = [
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
        ];
        // batch mode
        let mut batch = Batch::try_from_rows_with_types(
            vec![Row::from(vec![
                Value::from(4),
                Value::from(2),
                Value::from(3),
            ])],
            &ty,
        )
        .unwrap();
        let ret = safe_mfp.eval_batch_into(&mut batch).unwrap();

        assert_eq!(
            ret,
            Batch::try_from_rows_with_types(
                vec![Row::from(vec![Value::from(false), Value::from(true)])],
                &[
                    ConcreteDataType::boolean_datatype(),
                    ConcreteDataType::boolean_datatype(),
                ],
            )
            .unwrap()
        );
    }

    #[test]
    fn manipulation_mfp() {
        // give a input of 4 columns
        let mfp = MapFilterProject::new(4);
        // append a expression to the mfp'input row that get the sum of the first 3 columns
        let mfp = mfp
            .map(vec![ScalarExpr::Column(0)
                .call_binary(ScalarExpr::Column(1), BinaryFunc::AddInt32)
                .call_binary(ScalarExpr::Column(2), BinaryFunc::AddInt32)])
            .unwrap();
        // only retain sum result
        let mfp = mfp.project(vec![4]).unwrap();
        // accept only if the sum is greater than 10
        let mfp = mfp
            .filter(vec![ScalarExpr::Column(0).call_binary(
                ScalarExpr::Literal(Value::from(10i32), ConcreteDataType::int32_datatype()),
                BinaryFunc::Gt,
            )])
            .unwrap();
        let input1 = vec![
            Value::from(4),
            Value::from(2),
            Value::from(3),
            Value::from("abc"),
        ];
        let safe_mfp = SafeMfpPlan { mfp };
        let ret = safe_mfp
            .evaluate_into(&mut input1.clone(), &mut Row::empty())
            .unwrap();
        assert_eq!(ret, None);

        let input_type = [
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::string_datatype(),
        ];

        let mut input1_batch =
            Batch::try_from_rows_with_types(vec![Row::new(input1)], &input_type).unwrap();
        let ret_batch = safe_mfp.eval_batch_into(&mut input1_batch).unwrap();
        assert_eq!(
            ret_batch,
            Batch::try_new(vec![Arc::new(Int32Vector::from_vec(vec![]))], 0).unwrap()
        );

        let input2 = vec![
            Value::from(5),
            Value::from(2),
            Value::from(4),
            Value::from("abc"),
        ];
        let ret = safe_mfp
            .evaluate_into(&mut input2.clone(), &mut Row::empty())
            .unwrap();
        assert_eq!(ret, Some(Row::pack(vec![Value::from(11)])));

        let mut input2_batch =
            Batch::try_from_rows_with_types(vec![Row::new(input2)], &input_type).unwrap();
        let ret_batch = safe_mfp.eval_batch_into(&mut input2_batch).unwrap();
        assert_eq!(
            ret_batch,
            Batch::try_new(vec![Arc::new(Int32Vector::from_vec(vec![11]))], 1).unwrap()
        );
    }

    #[test]
    fn test_permute() {
        let mfp = MapFilterProject::new(3)
            .map(vec![
                ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt)
            ])
            .unwrap()
            .filter(vec![
                ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Gt)
            ])
            .unwrap()
            .project(vec![0, 1])
            .unwrap();
        assert_eq!(mfp.demand(), BTreeSet::from([0, 1]));
        let mut less = mfp.clone();
        less.permute(BTreeMap::from([(1, 0), (0, 1)]), 2).unwrap();

        let mut more = mfp.clone();
        more.permute(BTreeMap::from([(0, 1), (1, 2), (2, 0)]), 4)
            .unwrap();
    }

    #[test]
    fn mfp_test_cast_and_filter() {
        let mfp = MapFilterProject::new(3)
            .map(vec![ScalarExpr::Column(0).call_unary(UnaryFunc::Cast(
                ConcreteDataType::int32_datatype(),
            ))])
            .unwrap()
            .filter(vec![
                ScalarExpr::Column(3).call_binary(ScalarExpr::Column(1), BinaryFunc::Gt)
            ])
            .unwrap()
            .project([0, 1, 2])
            .unwrap();
        let input1 = vec![
            Value::from(4i64),
            Value::from(2),
            Value::from(3),
            Value::from(53),
        ];
        let safe_mfp = SafeMfpPlan { mfp };
        let ret = safe_mfp.evaluate_into(&mut input1.clone(), &mut Row::empty());
        assert!(matches!(ret, Err(EvalError::InvalidArgument { .. })));

        let input_type = [
            ConcreteDataType::int64_datatype(),
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
        ];
        let mut input1_batch =
            Batch::try_from_rows_with_types(vec![Row::new(input1)], &input_type).unwrap();
        let ret_batch = safe_mfp.eval_batch_into(&mut input1_batch);
        assert!(matches!(ret_batch, Err(EvalError::InvalidArgument { .. })));

        let input2 = vec![Value::from(4i64), Value::from(2), Value::from(3)];
        let ret = safe_mfp
            .evaluate_into(&mut input2.clone(), &mut Row::empty())
            .unwrap();
        assert_eq!(ret, Some(Row::new(input2.clone())));

        let input_type = [
            ConcreteDataType::int64_datatype(),
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
        ];
        let input2_batch =
            Batch::try_from_rows_with_types(vec![Row::new(input2)], &input_type).unwrap();
        let ret_batch = safe_mfp.eval_batch_into(&mut input2_batch.clone()).unwrap();
        assert_eq!(ret_batch, input2_batch);

        let input3 = vec![Value::from(4i64), Value::from(5), Value::from(2)];
        let ret = safe_mfp
            .evaluate_into(&mut input3.clone(), &mut Row::empty())
            .unwrap();
        assert_eq!(ret, None);

        let input3_batch =
            Batch::try_from_rows_with_types(vec![Row::new(input3)], &input_type).unwrap();
        let ret_batch = safe_mfp.eval_batch_into(&mut input3_batch.clone()).unwrap();
        assert_eq!(
            ret_batch,
            Batch::try_new(
                vec![
                    Arc::new(Int64Vector::from_vec(Default::default())),
                    Arc::new(Int32Vector::from_vec(Default::default())),
                    Arc::new(Int32Vector::from_vec(Default::default()))
                ],
                0
            )
            .unwrap()
        );
    }

    #[test]
    fn test_mfp_out_of_order() {
        let mfp = MapFilterProject::new(3)
            .project(vec![2, 1, 0])
            .unwrap()
            .filter(vec![
                ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Gt)
            ])
            .unwrap()
            .map(vec![
                ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt)
            ])
            .unwrap()
            .project(vec![3])
            .unwrap();
        let input1 = vec![Value::from(2), Value::from(3), Value::from(4)];
        let safe_mfp = SafeMfpPlan { mfp };
        let ret = safe_mfp.evaluate_into(&mut input1.clone(), &mut Row::empty());
        assert_eq!(ret.unwrap(), Some(Row::new(vec![Value::from(false)])));

        let input_type = [
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
            ConcreteDataType::int32_datatype(),
        ];
        let mut input1_batch =
            Batch::try_from_rows_with_types(vec![Row::new(input1)], &input_type).unwrap();
        let ret_batch = safe_mfp.eval_batch_into(&mut input1_batch).unwrap();

        assert_eq!(
            ret_batch,
            Batch::try_new(vec![Arc::new(BooleanVector::from(vec![false]))], 1).unwrap()
        );
    }
    #[test]
    fn test_mfp_chore() {
        // project keeps permute columns until it becomes the identity permutation
        let mfp = MapFilterProject::new(3)
            .project([1, 2, 0])
            .unwrap()
            .project([1, 2, 0])
            .unwrap()
            .project([1, 2, 0])
            .unwrap();
        assert_eq!(mfp, MapFilterProject::new(3));
    }
}