flow/expr/linear.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! define MapFilterProject which is a compound operator that can be applied row-by-row.
use std::collections::{BTreeMap, BTreeSet};
use arrow::array::BooleanArray;
use arrow::buffer::BooleanBuffer;
use arrow::compute::FilterBuilder;
use common_telemetry::trace;
use datatypes::prelude::ConcreteDataType;
use datatypes::value::Value;
use datatypes::vectors::{BooleanVector, Helper};
use itertools::Itertools;
use snafu::{ensure, OptionExt, ResultExt};
use crate::error::{Error, InvalidQuerySnafu};
use crate::expr::error::{ArrowSnafu, DataTypeSnafu, EvalError, InternalSnafu, TypeMismatchSnafu};
use crate::expr::{Batch, InvalidArgumentSnafu, ScalarExpr};
use crate::repr::{self, value_to_internal_ts, Diff, Row};
/// A compound operator that can be applied row-by-row.
///
/// In practice, this operator is a sequence of map, filter, and project in arbitrary order,
/// which can and is stored by reordering the sequence's
/// apply order to a `map` first, `filter` second and `project` third order.
///
/// input is a row(a sequence of values), which is also being used for store intermediate results,
/// like `map` operator can append new columns to the row according to it's expressions,
/// `filter` operator decide whether this entire row can even be output by decide whether the row satisfy the predicates,
/// `project` operator decide which columns of the row should be output.
///
/// This operator integrates the map, filter, and project operators.
/// It applies a sequences of map expressions, which are allowed to
/// refer to previous expressions, interleaved with predicates which
/// must be satisfied for an output to be produced. If all predicates
/// evaluate to `Value::Boolean(True)` the data at the identified columns are
/// collected and produced as output in a packed `Row`.
///
/// This operator is a "builder" and its contents may contain expressions
/// that are not yet executable. For example, it may contain temporal
/// expressions in `self.expressions`, even though this is not something
/// we can directly evaluate. The plan creation methods will defensively
/// ensure that the right thing happens.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct MapFilterProject {
/// A sequence of expressions that should be appended to the row.
///
/// Many of these expressions may not be produced in the output,
/// and may only be present as common subexpressions.
pub expressions: Vec<ScalarExpr>,
/// Expressions that must evaluate to `Datum::True` for the output
/// row to be produced.
///
/// Each entry is prepended with a column identifier indicating
/// the column *before* which the predicate should first be applied.
/// Most commonly this would be one plus the largest column identifier
/// in the predicate's referred columns, but it could be larger to implement
/// guarded evaluation of predicates.
/// Put it in another word, the first element of the tuple means
/// the predicates can't be evaluated until that number of columns is formed.
///
/// This list should be sorted by the first field.
pub predicates: Vec<(usize, ScalarExpr)>,
/// A sequence of column identifiers whose data form the output row.
pub projection: Vec<usize>,
/// The expected number of input columns.
///
/// This is needed to ensure correct identification of newly formed
/// columns in the output.
pub input_arity: usize,
}
impl MapFilterProject {
/// Create a no-op operator for an input of a supplied arity.
pub fn new(input_arity: usize) -> Self {
Self {
expressions: Vec::new(),
predicates: Vec::new(),
projection: (0..input_arity).collect(),
input_arity,
}
}
pub fn get_nth_expr(&self, n: usize) -> Option<ScalarExpr> {
let idx = *self.projection.get(n)?;
if idx < self.input_arity {
Some(ScalarExpr::Column(idx))
} else {
// find direct ref to input's expr
let mut expr = self.expressions.get(idx - self.input_arity)?;
loop {
match expr {
ScalarExpr::Column(prev) => {
if *prev < self.input_arity {
return Some(ScalarExpr::Column(*prev));
} else {
expr = self.expressions.get(*prev - self.input_arity)?;
continue;
}
}
_ => return Some(expr.clone()),
}
}
}
}
/// The number of columns expected in the output row.
pub fn output_arity(&self) -> usize {
self.projection.len()
}
/// Given two mfps, return an mfp that applies one
/// followed by the other.
/// Note that the arguments are in the opposite order
/// from how function composition is usually written in mathematics.
pub fn compose(before: Self, after: Self) -> Result<Self, Error> {
let (m, f, p) = after.into_map_filter_project();
before.map(m)?.filter(f)?.project(p)
}
/// True if the operator describes the identity transformation.
pub fn is_identity(&self) -> bool {
self.expressions.is_empty()
&& self.predicates.is_empty()
// identity if projection is the identity permutation
&& self.projection.len() == self.input_arity
&& self.projection.iter().enumerate().all(|(i, p)| i == *p)
}
/// Retain only the indicated columns in the presented order.
///
/// i.e. before: `self.projection = [1, 2, 0], columns = [1, 0]`
/// ```mermaid
/// flowchart TD
/// col-0
/// col-1
/// col-2
/// projection --> |0|col-1
/// projection --> |1|col-2
/// projection --> |2|col-0
/// ```
///
/// after: `self.projection = [2, 1]`
/// ```mermaid
/// flowchart TD
/// col-0
/// col-1
/// col-2
/// project("project:[1,2,0]")
/// project
/// project -->|0| col-1
/// project -->|1| col-2
/// project -->|2| col-0
/// new_project("apply new project:[1,0]")
/// new_project -->|0| col-2
/// new_project -->|1| col-1
/// ```
pub fn project<I>(mut self, columns: I) -> Result<Self, Error>
where
I: IntoIterator<Item = usize> + std::fmt::Debug,
{
self.projection = columns
.into_iter()
.map(|c| self.projection.get(c).cloned().ok_or(c))
.collect::<Result<Vec<_>, _>>()
.map_err(|c| {
InvalidQuerySnafu {
reason: format!(
"column index {} out of range, expected at most {} columns",
c,
self.projection.len()
),
}
.build()
})?;
Ok(self)
}
/// Retain only rows satisfying these predicates.
///
/// This method introduces predicates as eagerly as they can be evaluated,
/// which may not be desired for predicates that may cause exceptions.
/// If fine manipulation is required, the predicates can be added manually.
///
/// simply added to the end of the predicates list
///
/// while paying attention to column references maintained by `self.projection`
///
/// so `self.projection = [1, 2, 0], filter = [0]+[1]>0`:
/// becomes:
/// ```mermaid
/// flowchart TD
/// col-0
/// col-1
/// col-2
/// project("first project:[1,2,0]")
/// project
/// project -->|0| col-1
/// project -->|1| col-2
/// project -->|2| col-0
/// filter("then filter:[0]+[1]>0")
/// filter -->|0| col-1
/// filter --> |1| col-2
/// ```
pub fn filter<I>(mut self, predicates: I) -> Result<Self, Error>
where
I: IntoIterator<Item = ScalarExpr>,
{
for mut predicate in predicates {
// Correct column references.
predicate.permute(&self.projection[..])?;
// Validate column references.
let referred_columns = predicate.get_all_ref_columns();
for c in referred_columns.iter() {
// current row len include input columns and previous number of expressions
let cur_row_len = self.input_arity + self.expressions.len();
ensure!(
*c < cur_row_len,
InvalidQuerySnafu {
reason: format!(
"column index {} out of range, expected at most {} columns",
c, cur_row_len
)
}
);
}
// Insert predicate as eagerly as it can be evaluated:
// just after the largest column in its support is formed.
let max_support = referred_columns
.into_iter()
.max()
.map(|c| c + 1)
.unwrap_or(0);
self.predicates.push((max_support, predicate))
}
// Stable sort predicates by position at which they take effect.
self.predicates
.sort_by_key(|(position, _predicate)| *position);
Ok(self)
}
/// Append the result of evaluating expressions to each row.
///
/// simply append `expressions` to `self.expressions`
///
/// while paying attention to column references maintained by `self.projection`
///
/// hence, before apply map with a previously non-trivial projection would be like:
/// before:
/// ```mermaid
/// flowchart TD
/// col-0
/// col-1
/// col-2
/// projection --> |0|col-1
/// projection --> |1|col-2
/// projection --> |2|col-0
/// ```
/// after apply map:
/// ```mermaid
/// flowchart TD
/// col-0
/// col-1
/// col-2
/// project("project:[1,2,0]")
/// project
/// project -->|0| col-1
/// project -->|1| col-2
/// project -->|2| col-0
/// map("map:[0]/[1]/[2]")
/// map -->|0|col-1
/// map -->|1|col-2
/// map -->|2|col-0
/// ```
pub fn map<I>(mut self, expressions: I) -> Result<Self, Error>
where
I: IntoIterator<Item = ScalarExpr>,
{
for mut expression in expressions {
// Correct column references.
expression.permute(&self.projection[..])?;
// Validate column references.
for c in expression.get_all_ref_columns().into_iter() {
// current row len include input columns and previous number of expressions
let current_row_len = self.input_arity + self.expressions.len();
ensure!(
c < current_row_len,
InvalidQuerySnafu {
reason: format!(
"column index {} out of range, expected at most {} columns",
c, current_row_len
)
}
);
}
// Introduce expression and produce as output.
self.expressions.push(expression);
// Expression by default is projected to output.
let cur_expr_col_num = self.input_arity + self.expressions.len() - 1;
self.projection.push(cur_expr_col_num);
}
Ok(self)
}
/// Like [`MapFilterProject::as_map_filter_project`], but consumes `self` rather than cloning.
pub fn into_map_filter_project(self) -> (Vec<ScalarExpr>, Vec<ScalarExpr>, Vec<usize>) {
let predicates = self
.predicates
.into_iter()
.map(|(_pos, predicate)| predicate)
.collect();
(self.expressions, predicates, self.projection)
}
/// As the arguments to `Map`, `Filter`, and `Project` operators.
///
/// In principle, this operator can be implemented as a sequence of
/// more elemental operators, likely less efficiently.
pub fn as_map_filter_project(&self) -> (Vec<ScalarExpr>, Vec<ScalarExpr>, Vec<usize>) {
self.clone().into_map_filter_project()
}
}
impl MapFilterProject {
/// Convert the `MapFilterProject` into a safe evaluation plan. Marking it safe to evaluate.
pub fn into_safe(self) -> SafeMfpPlan {
SafeMfpPlan { mfp: self }
}
/// Optimize the `MapFilterProject` in place.
pub fn optimize(&mut self) {
// TODO(discord9): optimize
}
/// get the mapping of old columns to new columns after the mfp
pub fn get_old_to_new_mapping(&self) -> BTreeMap<usize, usize> {
BTreeMap::from_iter(
self.projection
.clone()
.into_iter()
.enumerate()
.map(|(new, old)| {
// `projection` give the new -> old mapping
let mut old = old;
// trace back to the original column
// since there maybe indirect ref to old columns like
// col 2 <- expr=col(2) at pos col 4 <- expr=col(4) at pos col 6
// ideally such indirect ref should be optimize away
// TODO(discord9): refactor this after impl `optimize()`
while let Some(ScalarExpr::Column(prev)) = if old >= self.input_arity {
// get the correspond expr if not a original column
self.expressions.get(old - self.input_arity)
} else {
// we don't care about non column ref case since only need old to new column mapping
// in which case, the old->new mapping remain the same
None
} {
old = *prev;
if old < self.input_arity {
break;
}
}
(old, new)
}),
)
}
/// Lists input columns whose values are used in outputs.
///
/// It is entirely appropriate to determine the demand of an instance
/// and then both apply a projection to the subject of the instance and
/// `self.permute` this instance.
pub fn demand(&self) -> BTreeSet<usize> {
let mut demanded = BTreeSet::new();
// first, get all columns referenced by predicates
for (_index, pred) in self.predicates.iter() {
demanded.extend(pred.get_all_ref_columns());
}
// then, get columns referenced by projection which is direct output
demanded.extend(self.projection.iter().cloned());
// check every expressions, if a expression is contained in demanded, then all columns it referenced should be added to demanded
for index in (0..self.expressions.len()).rev() {
if demanded.contains(&(self.input_arity + index)) {
demanded.extend(self.expressions[index].get_all_ref_columns());
}
}
// only keep demanded columns that are in input
demanded.retain(|col| col < &self.input_arity);
demanded
}
/// Update input column references, due to an input projection or permutation.
///
/// The `shuffle` argument remaps expected column identifiers to new locations,
/// with the expectation that `shuffle` describes all input columns, and so the
/// intermediate results will be able to start at position `shuffle.len()`.
///
/// The supplied `shuffle` may not list columns that are not "demanded" by the
/// instance, and so we should ensure that `self` is optimized to not reference
/// columns that are not demanded.
pub fn permute(
&mut self,
mut shuffle: BTreeMap<usize, usize>,
new_input_arity: usize,
) -> Result<(), Error> {
// check shuffle is valid
let demand = self.demand();
for d in demand {
ensure!(
shuffle.contains_key(&d),
InvalidQuerySnafu {
reason: format!(
"Demanded column {} is not in shuffle's keys: {:?}",
d,
shuffle.keys()
)
}
);
}
ensure!(
shuffle.len() <= new_input_arity,
InvalidQuerySnafu {
reason: format!(
"shuffle's length {} is greater than new_input_arity {}",
shuffle.len(),
self.input_arity
)
}
);
// decompose self into map, filter, project for ease of manipulation
let (mut map, mut filter, mut project) = self.as_map_filter_project();
for index in 0..map.len() {
// Intermediate columns are just shifted.
shuffle.insert(self.input_arity + index, new_input_arity + index);
}
for expr in map.iter_mut() {
expr.permute_map(&shuffle)?;
}
for pred in filter.iter_mut() {
pred.permute_map(&shuffle)?;
}
let new_row_len = new_input_arity + map.len();
for proj in project.iter_mut() {
ensure!(
shuffle[proj] < new_row_len,
InvalidQuerySnafu {
reason: format!(
"shuffled column index {} out of range, expected at most {} columns",
shuffle[proj], new_row_len
)
}
);
*proj = shuffle[proj];
}
*self = Self::new(new_input_arity)
.map(map)?
.filter(filter)?
.project(project)?;
Ok(())
}
}
/// A wrapper type which indicates it is safe to simply evaluate all expressions.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct SafeMfpPlan {
/// the inner `MapFilterProject` that is safe to evaluate.
pub(crate) mfp: MapFilterProject,
}
impl SafeMfpPlan {
/// See [`MapFilterProject::permute`].
pub fn permute(&mut self, map: BTreeMap<usize, usize>, new_arity: usize) -> Result<(), Error> {
self.mfp.permute(map, new_arity)
}
/// similar to [`MapFilterProject::evaluate_into`], just in batch, and rows that don't pass the predicates are not included in the output.
///
/// so it's not guaranteed that the output will have the same number of rows as the input.
pub fn eval_batch_into(&self, batch: &mut Batch) -> Result<Batch, EvalError> {
ensure!(
batch.column_count() == self.mfp.input_arity,
InvalidArgumentSnafu {
reason: format!(
"batch column length {} is not equal to input_arity {}",
batch.column_count(),
self.mfp.input_arity
),
}
);
let passed_predicates = self.eval_batch_inner(batch)?;
let filter = FilterBuilder::new(passed_predicates.as_boolean_array());
let pred = filter.build();
let mut result = vec![];
for col in batch.batch() {
let filtered = pred
.filter(col.to_arrow_array().as_ref())
.with_context(|_| ArrowSnafu {
context: format!("failed to filter column for mfp operator {:?}", self),
})?;
result.push(Helper::try_into_vector(filtered).context(DataTypeSnafu {
msg: "Failed to convert arrow array to vector",
})?);
}
let projected = self
.mfp
.projection
.iter()
.map(|c| result[*c].clone())
.collect_vec();
let row_count = pred.count();
Batch::try_new(projected, row_count)
}
/// similar to [`MapFilterProject::evaluate_into`], just in batch.
pub fn eval_batch_inner(&self, batch: &mut Batch) -> Result<BooleanVector, EvalError> {
// mark the columns that have been evaluated and appended to the `batch`
let mut expression = 0;
// preds default to true and will be updated as we evaluate each predicate
let buf = BooleanBuffer::new_set(batch.row_count());
let arr = BooleanArray::new(buf, None);
let mut all_preds = BooleanVector::from(arr);
// to compute predicate, need to first compute all expressions used in predicates
for (support, predicate) in self.mfp.predicates.iter() {
while self.mfp.input_arity + expression < *support {
let expr_eval = self.mfp.expressions[expression].eval_batch(batch)?;
batch.batch_mut().push(expr_eval);
expression += 1;
}
let pred_vec = predicate.eval_batch(batch)?;
let pred_arr = pred_vec.to_arrow_array();
let pred_arr = pred_arr.as_any().downcast_ref::<BooleanArray>().context({
TypeMismatchSnafu {
expected: ConcreteDataType::boolean_datatype(),
actual: pred_vec.data_type(),
}
})?;
let all_arr = all_preds.as_boolean_array();
let res_arr = arrow::compute::and(all_arr, pred_arr).context(ArrowSnafu {
context: format!("failed to compute predicate for mfp operator {:?}", self),
})?;
all_preds = BooleanVector::from(res_arr);
}
// while evaluated expressions are less than total expressions, keep evaluating
while expression < self.mfp.expressions.len() {
let expr_eval = self.mfp.expressions[expression].eval_batch(batch)?;
batch.batch_mut().push(expr_eval);
expression += 1;
}
Ok(all_preds)
}
/// Evaluates the linear operator on a supplied list of datums.
///
/// The arguments are the initial datums associated with the row,
/// and an appropriately lifetimed arena for temporary allocations
/// needed by scalar evaluation.
///
/// An `Ok` result will either be `None` if any predicate did not
/// evaluate to `Value::Boolean(true)`, or the values of the columns listed
/// by `self.projection` if all predicates passed. If an error
/// occurs in the evaluation it is returned as an `Err` variant.
/// As the evaluation exits early with failed predicates, it may
/// miss some errors that would occur later in evaluation.
///
/// The `row` is not cleared first, but emptied if the function
/// returns `Ok(Some(row)).
#[inline(always)]
pub fn evaluate_into(
&self,
values: &mut Vec<Value>,
row_buf: &mut Row,
) -> Result<Option<Row>, EvalError> {
ensure!(
values.len() == self.mfp.input_arity,
InvalidArgumentSnafu {
reason: format!(
"values length {} is not equal to input_arity {}",
values.len(),
self.mfp.input_arity
),
}
);
let passed_predicates = self.evaluate_inner(values)?;
if !passed_predicates {
Ok(None)
} else {
row_buf.clear();
row_buf.extend(self.mfp.projection.iter().map(|c| values[*c].clone()));
Ok(Some(row_buf.clone()))
}
}
/// Populates `values` with `self.expressions` and tests `self.predicates`.
///
/// This does not apply `self.projection`, which is up to the calling method.
pub fn evaluate_inner(&self, values: &mut Vec<Value>) -> Result<bool, EvalError> {
let mut expression = 0;
for (support, predicate) in self.mfp.predicates.iter() {
while self.mfp.input_arity + expression < *support {
values.push(self.mfp.expressions[expression].eval(&values[..])?);
expression += 1;
}
if predicate.eval(&values[..])? != Value::Boolean(true) {
return Ok(false);
}
}
// while evaluated expressions are less than total expressions, keep evaluating
while expression < self.mfp.expressions.len() {
values.push(self.mfp.expressions[expression].eval(&values[..])?);
expression += 1;
}
Ok(true)
}
}
impl std::ops::Deref for SafeMfpPlan {
type Target = MapFilterProject;
fn deref(&self) -> &Self::Target {
&self.mfp
}
}
/// Predicates partitioned into temporal and non-temporal.
///
/// Temporal predicates require some recognition to determine their
/// structure, and it is best to do that once and re-use the results.
///
/// There are restrictions on the temporal predicates we currently support.
/// They must directly constrain `MzNow` from below or above,
/// by expressions that do not themselves contain `MzNow`.
/// Conjunctions of such constraints are also ok.
#[derive(Clone, Debug, PartialEq)]
pub struct MfpPlan {
/// Normal predicates to evaluate on `&[Datum]` and expect `Ok(Datum::True)`.
pub(crate) mfp: SafeMfpPlan,
/// TODO(discord9): impl temporal filter later
/// Expressions that when evaluated lower-bound `MzNow`.
pub(crate) lower_bounds: Vec<ScalarExpr>,
/// Expressions that when evaluated upper-bound `MzNow`.
pub(crate) upper_bounds: Vec<ScalarExpr>,
}
impl MfpPlan {
/// Indicates if the `MfpPlan` contains temporal predicates. That is have outputs that may occur in future.
pub fn is_temporal(&self) -> bool {
!self.lower_bounds.is_empty() || !self.upper_bounds.is_empty()
}
/// find `now` in `predicates` and put them into lower/upper temporal bounds for temporal filter to use
pub fn create_from(mut mfp: MapFilterProject) -> Result<Self, Error> {
let mut lower_bounds = Vec::new();
let mut upper_bounds = Vec::new();
let mut temporal = Vec::new();
// Optimize, to ensure that temporal predicates are move in to `mfp.predicates`.
mfp.optimize();
mfp.predicates.retain(|(_position, predicate)| {
if predicate.contains_temporal() {
temporal.push(predicate.clone());
false
} else {
true
}
});
for predicate in temporal {
let (lower, upper) = predicate.extract_bound()?;
lower_bounds.extend(lower);
upper_bounds.extend(upper);
}
Ok(Self {
mfp: SafeMfpPlan { mfp },
lower_bounds,
upper_bounds,
})
}
/// Indicates if the planned `MapFilterProject` emits exactly its inputs as outputs.
pub fn is_identity(&self) -> bool {
self.mfp.mfp.is_identity() && self.lower_bounds.is_empty() && self.upper_bounds.is_empty()
}
/// if `lower_bound <= sys_time < upper_bound`, return `[(data, sys_time, +1), (data, min_upper_bound, -1)]`
///
/// else if `sys_time < lower_bound`, return `[(data, lower_bound, +1), (data, min_upper_bound, -1)]`
///
/// else if `sys_time >= upper_bound`, return `[None, None]`
///
/// if eval error appeal in any of those process, corresponding result will be `Err`
pub fn evaluate<E: From<EvalError>>(
&self,
values: &mut Vec<Value>,
sys_time: repr::Timestamp,
diff: Diff,
) -> impl Iterator<Item = Result<(Row, repr::Timestamp, Diff), (E, repr::Timestamp, Diff)>>
{
match self.mfp.evaluate_inner(values) {
Err(e) => {
return Some(Err((e.into(), sys_time, diff)))
.into_iter()
.chain(None);
}
Ok(true) => {}
Ok(false) => {
return None.into_iter().chain(None);
}
}
let mut lower_bound = sys_time;
let mut upper_bound = None;
// Track whether we have seen a null in either bound, as this should
// prevent the record from being produced at any time.
let mut null_eval = false;
let ret_err = |e: EvalError| {
Some(Err((e.into(), sys_time, diff)))
.into_iter()
.chain(None)
};
for l in self.lower_bounds.iter() {
match l.eval(values) {
Ok(v) => {
if v.is_null() {
null_eval = true;
continue;
}
match value_to_internal_ts(v) {
Ok(ts) => lower_bound = lower_bound.max(ts),
Err(e) => return ret_err(e),
}
}
Err(e) => return ret_err(e),
};
}
for u in self.upper_bounds.iter() {
if upper_bound != Some(lower_bound) {
match u.eval(values) {
Err(e) => return ret_err(e),
Ok(val) => {
if val.is_null() {
null_eval = true;
continue;
}
let ts = match value_to_internal_ts(val) {
Ok(ts) => ts,
Err(e) => return ret_err(e),
};
if let Some(upper) = upper_bound {
upper_bound = Some(upper.min(ts));
} else {
upper_bound = Some(ts);
}
// Force the upper bound to be at least the lower
// bound.
if upper_bound.is_some() && upper_bound < Some(lower_bound) {
upper_bound = Some(lower_bound);
}
}
}
}
}
if Some(lower_bound) != upper_bound && !null_eval {
if self.mfp.mfp.projection.iter().any(|c| values.len() <= *c) {
trace!("values={:?}, mfp={:?}", &values, &self.mfp.mfp);
let err = InternalSnafu {
reason: format!(
"Index out of bound for mfp={:?} and values={:?}",
&self.mfp.mfp, &values
),
}
.build();
return ret_err(err);
}
// safety: already checked that `projection` is not out of bound
let res_row = Row::pack(self.mfp.mfp.projection.iter().map(|c| values[*c].clone()));
let upper_opt =
upper_bound.map(|upper_bound| Ok((res_row.clone(), upper_bound, -diff)));
// if diff==-1, the `upper_opt` will cancel the future `-1` inserted before by previous diff==1 row
let lower = Some(Ok((res_row, lower_bound, diff)));
lower.into_iter().chain(upper_opt)
} else {
None.into_iter().chain(None)
}
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use datatypes::data_type::ConcreteDataType;
use datatypes::vectors::{Int32Vector, Int64Vector};
use pretty_assertions::assert_eq;
use super::*;
use crate::expr::{BinaryFunc, UnaryFunc, UnmaterializableFunc};
#[test]
fn test_mfp_with_time() {
use crate::expr::func::BinaryFunc;
let lte_now = ScalarExpr::Column(0).call_binary(
ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now),
BinaryFunc::Lte,
);
assert!(lte_now.contains_temporal());
let gt_now_minus_two = ScalarExpr::Column(0)
.call_binary(
ScalarExpr::Literal(Value::from(2i64), ConcreteDataType::int64_datatype()),
BinaryFunc::AddInt64,
)
.call_binary(
ScalarExpr::CallUnmaterializable(UnmaterializableFunc::Now),
BinaryFunc::Gt,
);
assert!(gt_now_minus_two.contains_temporal());
let mfp = MapFilterProject::new(3)
.filter(vec![
// col(0) <= now()
lte_now,
// col(0) + 2 > now()
gt_now_minus_two,
])
.unwrap()
.project(vec![0])
.unwrap();
let mfp = MfpPlan::create_from(mfp).unwrap();
let expected = vec![
(
0,
vec![
(Row::new(vec![Value::from(4i64)]), 4, 1),
(Row::new(vec![Value::from(4i64)]), 6, -1),
],
),
(
5,
vec![
(Row::new(vec![Value::from(4i64)]), 5, 1),
(Row::new(vec![Value::from(4i64)]), 6, -1),
],
),
(10, vec![]),
];
for (sys_time, expected) in expected {
let mut values = vec![Value::from(4i64), Value::from(2i64), Value::from(3i64)];
let ret = mfp
.evaluate::<EvalError>(&mut values, sys_time, 1)
.collect::<Result<Vec<_>, _>>()
.unwrap();
assert_eq!(ret, expected);
}
}
#[test]
fn test_mfp() {
use crate::expr::func::BinaryFunc;
let mfp = MapFilterProject::new(3)
.map(vec![
ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt),
ScalarExpr::Column(1).call_binary(ScalarExpr::Column(2), BinaryFunc::Lt),
])
.unwrap()
.project(vec![3, 4])
.unwrap();
assert!(!mfp.is_identity());
let mfp = MapFilterProject::compose(mfp, MapFilterProject::new(2)).unwrap();
{
let mfp_0 = mfp.as_map_filter_project();
let same = MapFilterProject::new(3)
.map(mfp_0.0)
.unwrap()
.filter(mfp_0.1)
.unwrap()
.project(mfp_0.2)
.unwrap();
assert_eq!(mfp, same);
}
assert_eq!(mfp.demand().len(), 3);
let mut mfp = mfp;
mfp.permute(BTreeMap::from([(0, 2), (2, 0), (1, 1)]), 3)
.unwrap();
assert_eq!(
mfp,
MapFilterProject::new(3)
.map(vec![
ScalarExpr::Column(2).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt),
ScalarExpr::Column(1).call_binary(ScalarExpr::Column(0), BinaryFunc::Lt),
])
.unwrap()
.project(vec![3, 4])
.unwrap()
);
let safe_mfp = SafeMfpPlan { mfp };
let mut values = vec![Value::from(4), Value::from(2), Value::from(3)];
let ret = safe_mfp
.evaluate_into(&mut values, &mut Row::empty())
.unwrap()
.unwrap();
assert_eq!(ret, Row::pack(vec![Value::from(false), Value::from(true)]));
let ty = [
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
];
// batch mode
let mut batch = Batch::try_from_rows_with_types(
vec![Row::from(vec![
Value::from(4),
Value::from(2),
Value::from(3),
])],
&ty,
)
.unwrap();
let ret = safe_mfp.eval_batch_into(&mut batch).unwrap();
assert_eq!(
ret,
Batch::try_from_rows_with_types(
vec![Row::from(vec![Value::from(false), Value::from(true)])],
&[
ConcreteDataType::boolean_datatype(),
ConcreteDataType::boolean_datatype(),
],
)
.unwrap()
);
}
#[test]
fn manipulation_mfp() {
// give a input of 4 columns
let mfp = MapFilterProject::new(4);
// append a expression to the mfp'input row that get the sum of the first 3 columns
let mfp = mfp
.map(vec![ScalarExpr::Column(0)
.call_binary(ScalarExpr::Column(1), BinaryFunc::AddInt32)
.call_binary(ScalarExpr::Column(2), BinaryFunc::AddInt32)])
.unwrap();
// only retain sum result
let mfp = mfp.project(vec![4]).unwrap();
// accept only if the sum is greater than 10
let mfp = mfp
.filter(vec![ScalarExpr::Column(0).call_binary(
ScalarExpr::Literal(Value::from(10i32), ConcreteDataType::int32_datatype()),
BinaryFunc::Gt,
)])
.unwrap();
let input1 = vec![
Value::from(4),
Value::from(2),
Value::from(3),
Value::from("abc"),
];
let safe_mfp = SafeMfpPlan { mfp };
let ret = safe_mfp
.evaluate_into(&mut input1.clone(), &mut Row::empty())
.unwrap();
assert_eq!(ret, None);
let input_type = [
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::string_datatype(),
];
let mut input1_batch =
Batch::try_from_rows_with_types(vec![Row::new(input1)], &input_type).unwrap();
let ret_batch = safe_mfp.eval_batch_into(&mut input1_batch).unwrap();
assert_eq!(
ret_batch,
Batch::try_new(vec![Arc::new(Int32Vector::from_vec(vec![]))], 0).unwrap()
);
let input2 = vec![
Value::from(5),
Value::from(2),
Value::from(4),
Value::from("abc"),
];
let ret = safe_mfp
.evaluate_into(&mut input2.clone(), &mut Row::empty())
.unwrap();
assert_eq!(ret, Some(Row::pack(vec![Value::from(11)])));
let mut input2_batch =
Batch::try_from_rows_with_types(vec![Row::new(input2)], &input_type).unwrap();
let ret_batch = safe_mfp.eval_batch_into(&mut input2_batch).unwrap();
assert_eq!(
ret_batch,
Batch::try_new(vec![Arc::new(Int32Vector::from_vec(vec![11]))], 1).unwrap()
);
}
#[test]
fn test_permute() {
let mfp = MapFilterProject::new(3)
.map(vec![
ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt)
])
.unwrap()
.filter(vec![
ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Gt)
])
.unwrap()
.project(vec![0, 1])
.unwrap();
assert_eq!(mfp.demand(), BTreeSet::from([0, 1]));
let mut less = mfp.clone();
less.permute(BTreeMap::from([(1, 0), (0, 1)]), 2).unwrap();
let mut more = mfp.clone();
more.permute(BTreeMap::from([(0, 1), (1, 2), (2, 0)]), 4)
.unwrap();
}
#[test]
fn mfp_test_cast_and_filter() {
let mfp = MapFilterProject::new(3)
.map(vec![ScalarExpr::Column(0).call_unary(UnaryFunc::Cast(
ConcreteDataType::int32_datatype(),
))])
.unwrap()
.filter(vec![
ScalarExpr::Column(3).call_binary(ScalarExpr::Column(1), BinaryFunc::Gt)
])
.unwrap()
.project([0, 1, 2])
.unwrap();
let input1 = vec![
Value::from(4i64),
Value::from(2),
Value::from(3),
Value::from(53),
];
let safe_mfp = SafeMfpPlan { mfp };
let ret = safe_mfp.evaluate_into(&mut input1.clone(), &mut Row::empty());
assert!(matches!(ret, Err(EvalError::InvalidArgument { .. })));
let input_type = [
ConcreteDataType::int64_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
];
let mut input1_batch =
Batch::try_from_rows_with_types(vec![Row::new(input1)], &input_type).unwrap();
let ret_batch = safe_mfp.eval_batch_into(&mut input1_batch);
assert!(matches!(ret_batch, Err(EvalError::InvalidArgument { .. })));
let input2 = vec![Value::from(4i64), Value::from(2), Value::from(3)];
let ret = safe_mfp
.evaluate_into(&mut input2.clone(), &mut Row::empty())
.unwrap();
assert_eq!(ret, Some(Row::new(input2.clone())));
let input_type = [
ConcreteDataType::int64_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
];
let input2_batch =
Batch::try_from_rows_with_types(vec![Row::new(input2)], &input_type).unwrap();
let ret_batch = safe_mfp.eval_batch_into(&mut input2_batch.clone()).unwrap();
assert_eq!(ret_batch, input2_batch);
let input3 = vec![Value::from(4i64), Value::from(5), Value::from(2)];
let ret = safe_mfp
.evaluate_into(&mut input3.clone(), &mut Row::empty())
.unwrap();
assert_eq!(ret, None);
let input3_batch =
Batch::try_from_rows_with_types(vec![Row::new(input3)], &input_type).unwrap();
let ret_batch = safe_mfp.eval_batch_into(&mut input3_batch.clone()).unwrap();
assert_eq!(
ret_batch,
Batch::try_new(
vec![
Arc::new(Int64Vector::from_vec(Default::default())),
Arc::new(Int32Vector::from_vec(Default::default())),
Arc::new(Int32Vector::from_vec(Default::default()))
],
0
)
.unwrap()
);
}
#[test]
fn test_mfp_out_of_order() {
let mfp = MapFilterProject::new(3)
.project(vec![2, 1, 0])
.unwrap()
.filter(vec![
ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Gt)
])
.unwrap()
.map(vec![
ScalarExpr::Column(0).call_binary(ScalarExpr::Column(1), BinaryFunc::Lt)
])
.unwrap()
.project(vec![3])
.unwrap();
let input1 = vec![Value::from(2), Value::from(3), Value::from(4)];
let safe_mfp = SafeMfpPlan { mfp };
let ret = safe_mfp.evaluate_into(&mut input1.clone(), &mut Row::empty());
assert_eq!(ret.unwrap(), Some(Row::new(vec![Value::from(false)])));
let input_type = [
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::int32_datatype(),
];
let mut input1_batch =
Batch::try_from_rows_with_types(vec![Row::new(input1)], &input_type).unwrap();
let ret_batch = safe_mfp.eval_batch_into(&mut input1_batch).unwrap();
assert_eq!(
ret_batch,
Batch::try_new(vec![Arc::new(BooleanVector::from(vec![false]))], 1).unwrap()
);
}
#[test]
fn test_mfp_chore() {
// project keeps permute columns until it becomes the identity permutation
let mfp = MapFilterProject::new(3)
.project([1, 2, 0])
.unwrap()
.project([1, 2, 0])
.unwrap()
.project([1, 2, 0])
.unwrap();
assert_eq!(mfp, MapFilterProject::new(3));
}
}