flow/expr/
df_func.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Porting Datafusion scalar function to our scalar function to be used in dataflow

use std::sync::Arc;

use arrow::array::RecordBatchOptions;
use bytes::BytesMut;
use common_error::ext::BoxedError;
use common_recordbatch::DfRecordBatch;
use common_telemetry::debug;
use datafusion_physical_expr::PhysicalExpr;
use datatypes::data_type::DataType;
use datatypes::value::Value;
use datatypes::vectors::VectorRef;
use prost::Message;
use snafu::{IntoError, ResultExt};
use substrait::error::{DecodeRelSnafu, EncodeRelSnafu};
use substrait::substrait_proto_df::proto::expression::ScalarFunction;

use crate::error::Error;
use crate::expr::error::{
    ArrowSnafu, DatafusionSnafu as EvalDatafusionSnafu, EvalError, ExternalSnafu,
    InvalidArgumentSnafu,
};
use crate::expr::{Batch, ScalarExpr};
use crate::repr::RelationDesc;
use crate::transform::{from_scalar_fn_to_df_fn_impl, FunctionExtensions};

/// A way to represent a scalar function that is implemented in Datafusion
#[derive(Debug, Clone)]
pub struct DfScalarFunction {
    /// The raw bytes encoded datafusion scalar function
    pub(crate) raw_fn: RawDfScalarFn,
    // TODO(discord9): directly from datafusion expr
    /// The implementation of the function
    pub(crate) fn_impl: Arc<dyn PhysicalExpr>,
    /// The input schema of the function
    pub(crate) df_schema: Arc<datafusion_common::DFSchema>,
}

impl DfScalarFunction {
    pub fn new(raw_fn: RawDfScalarFn, fn_impl: Arc<dyn PhysicalExpr>) -> Result<Self, Error> {
        Ok(Self {
            df_schema: Arc::new(raw_fn.input_schema.to_df_schema()?),
            raw_fn,
            fn_impl,
        })
    }

    pub async fn try_from_raw_fn(raw_fn: RawDfScalarFn) -> Result<Self, Error> {
        Ok(Self {
            fn_impl: raw_fn.get_fn_impl().await?,
            df_schema: Arc::new(raw_fn.input_schema.to_df_schema()?),
            raw_fn,
        })
    }

    /// Evaluate a batch of expressions using input values
    pub fn eval_batch(&self, batch: &Batch, exprs: &[ScalarExpr]) -> Result<VectorRef, EvalError> {
        let row_count = batch.row_count();
        let batch: Vec<_> = exprs
            .iter()
            .map(|expr| expr.eval_batch(batch))
            .collect::<Result<_, _>>()?;

        let schema = self.df_schema.inner().clone();

        let arrays = batch
            .iter()
            .map(|array| array.to_arrow_array())
            .collect::<Vec<_>>();
        let rb = DfRecordBatch::try_new_with_options(schema, arrays, &RecordBatchOptions::new().with_row_count(Some(row_count))).map_err(|err| {
            ArrowSnafu {
                context:
                    "Failed to create RecordBatch from values when eval_batch datafusion scalar function",
            }
            .into_error(err)
        })?;

        let len = rb.num_rows();

        let res = self.fn_impl.evaluate(&rb).context(EvalDatafusionSnafu {
            context: "Failed to evaluate datafusion scalar function",
        })?;
        let res = common_query::columnar_value::ColumnarValue::try_from(&res)
            .map_err(BoxedError::new)
            .context(ExternalSnafu)?;
        let res_vec = res
            .try_into_vector(len)
            .map_err(BoxedError::new)
            .context(ExternalSnafu)?;

        Ok(res_vec)
    }

    /// eval a list of expressions using input values
    fn eval_args(values: &[Value], exprs: &[ScalarExpr]) -> Result<Vec<Value>, EvalError> {
        exprs
            .iter()
            .map(|expr| expr.eval(values))
            .collect::<Result<_, _>>()
    }

    // TODO(discord9): add RecordBatch support
    pub fn eval(&self, values: &[Value], exprs: &[ScalarExpr]) -> Result<Value, EvalError> {
        // first eval exprs to construct values to feed to datafusion
        let values: Vec<_> = Self::eval_args(values, exprs)?;
        if values.is_empty() {
            return InvalidArgumentSnafu {
                reason: "values is empty".to_string(),
            }
            .fail();
        }
        // TODO(discord9): make cols all array length of one
        let mut cols = vec![];
        for (idx, typ) in self
            .raw_fn
            .input_schema
            .typ()
            .column_types
            .iter()
            .enumerate()
        {
            let typ = typ.scalar_type();
            let mut array = typ.create_mutable_vector(1);
            array.push_value_ref(values[idx].as_value_ref());
            cols.push(array.to_vector().to_arrow_array());
        }
        let schema = self.df_schema.inner().clone();
        let rb = DfRecordBatch::try_new_with_options(
            schema,
            cols,
            &RecordBatchOptions::new().with_row_count(Some(1)),
        )
        .map_err(|err| {
            ArrowSnafu {
                context:
                    "Failed to create RecordBatch from values when eval datafusion scalar function",
            }
            .into_error(err)
        })?;

        let res = self.fn_impl.evaluate(&rb).context(EvalDatafusionSnafu {
            context: "Failed to evaluate datafusion scalar function",
        })?;
        let res = common_query::columnar_value::ColumnarValue::try_from(&res)
            .map_err(BoxedError::new)
            .context(ExternalSnafu)?;
        let res_vec = res
            .try_into_vector(1)
            .map_err(BoxedError::new)
            .context(ExternalSnafu)?;
        let res_val = res_vec
            .try_get(0)
            .map_err(BoxedError::new)
            .context(ExternalSnafu)?;
        Ok(res_val)
    }
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct RawDfScalarFn {
    /// The raw bytes encoded datafusion scalar function,
    /// due to substrait have too many layers of nested struct and `ScalarFunction` 's derive is different
    /// for simplicity's sake
    /// so we store bytes instead of `ScalarFunction` here
    /// but in unit test we will still compare decoded struct(using `f_decoded` field in Debug impl)
    pub(crate) f: bytes::BytesMut,
    /// The input schema of the function
    pub(crate) input_schema: RelationDesc,
    /// Extension contains mapping from function reference to function name
    pub(crate) extensions: FunctionExtensions,
}

impl std::fmt::Debug for RawDfScalarFn {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("RawDfScalarFn")
            .field("f", &self.f)
            .field("f_decoded", &ScalarFunction::decode(&mut self.f.as_ref()))
            .field("df_schema", &self.input_schema)
            .field("extensions", &self.extensions)
            .finish()
    }
}

impl RawDfScalarFn {
    pub fn from_proto(
        f: &substrait::substrait_proto_df::proto::expression::ScalarFunction,
        input_schema: RelationDesc,
        extensions: FunctionExtensions,
    ) -> Result<Self, Error> {
        let mut buf = BytesMut::new();
        f.encode(&mut buf)
            .context(EncodeRelSnafu)
            .map_err(BoxedError::new)
            .context(crate::error::ExternalSnafu)?;
        Ok(Self {
            f: buf,
            input_schema,
            extensions,
        })
    }
    async fn get_fn_impl(&self) -> Result<Arc<dyn PhysicalExpr>, Error> {
        let f = ScalarFunction::decode(&mut self.f.as_ref())
            .context(DecodeRelSnafu)
            .map_err(BoxedError::new)
            .context(crate::error::ExternalSnafu)?;
        debug!("Decoded scalar function: {:?}", f);

        let input_schema = &self.input_schema;
        let extensions = &self.extensions;

        from_scalar_fn_to_df_fn_impl(&f, input_schema, extensions).await
    }
}

impl std::cmp::PartialEq for DfScalarFunction {
    fn eq(&self, other: &Self) -> bool {
        self.raw_fn.eq(&other.raw_fn)
    }
}

// can't derive Eq because of Arc<dyn PhysicalExpr> not eq, so implement it manually
impl std::cmp::Eq for DfScalarFunction {}

impl std::cmp::PartialOrd for DfScalarFunction {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}
impl std::cmp::Ord for DfScalarFunction {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.raw_fn.cmp(&other.raw_fn)
    }
}
impl std::hash::Hash for DfScalarFunction {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.raw_fn.hash(state);
    }
}

#[cfg(test)]
mod test {

    use datatypes::prelude::ConcreteDataType;
    use substrait::substrait_proto_df::proto::expression::literal::LiteralType;
    use substrait::substrait_proto_df::proto::expression::{Literal, RexType};
    use substrait::substrait_proto_df::proto::function_argument::ArgType;
    use substrait::substrait_proto_df::proto::{Expression, FunctionArgument};

    use super::*;
    use crate::repr::{ColumnType, RelationType};

    #[tokio::test]
    async fn test_df_scalar_function() {
        let raw_scalar_func = ScalarFunction {
            function_reference: 0,
            arguments: vec![FunctionArgument {
                arg_type: Some(ArgType::Value(Expression {
                    rex_type: Some(RexType::Literal(Literal {
                        nullable: false,
                        type_variation_reference: 0,
                        literal_type: Some(LiteralType::I64(-1)),
                    })),
                })),
            }],
            output_type: None,
            ..Default::default()
        };
        let input_schema = RelationDesc::try_new(
            RelationType::new(vec![ColumnType::new_nullable(
                ConcreteDataType::null_datatype(),
            )]),
            vec!["null_column".to_string()],
        )
        .unwrap();
        let extensions = FunctionExtensions::from_iter(vec![(0, "abs")]);
        let raw_fn = RawDfScalarFn::from_proto(&raw_scalar_func, input_schema, extensions).unwrap();
        let df_func = DfScalarFunction::try_from_raw_fn(raw_fn).await.unwrap();
        assert_eq!(
            df_func
                .eval(&[Value::Null], &[ScalarExpr::Column(0)])
                .unwrap(),
            Value::Int64(1)
        );
    }
}