flow/
expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! for declare Expression in dataflow, including map, reduce, id and join(TODO!) etc.

mod df_func;
pub(crate) mod error;
pub(crate) mod func;
mod id;
mod linear;
pub(crate) mod relation;
mod scalar;
mod signature;
pub(crate) mod utils;

use arrow::compute::FilterBuilder;
use datatypes::prelude::{ConcreteDataType, DataType};
use datatypes::value::Value;
use datatypes::vectors::{BooleanVector, Helper, VectorRef};
pub(crate) use df_func::{DfScalarFunction, RawDfScalarFn};
pub(crate) use error::{EvalError, InvalidArgumentSnafu};
pub(crate) use func::{BinaryFunc, UnaryFunc, UnmaterializableFunc, VariadicFunc};
pub(crate) use id::{GlobalId, Id, LocalId};
use itertools::Itertools;
pub(crate) use linear::{MapFilterProject, MfpPlan, SafeMfpPlan};
pub(crate) use relation::{Accum, Accumulator, AggregateExpr, AggregateFunc};
pub(crate) use scalar::{ScalarExpr, TypedExpr};
use snafu::{ensure, ResultExt};

use crate::expr::error::{ArrowSnafu, DataTypeSnafu};
use crate::repr::Diff;

pub const TUMBLE_START: &str = "tumble_start";
pub const TUMBLE_END: &str = "tumble_end";

/// A batch of vectors with the same length but without schema, only useful in dataflow
///
/// somewhere cheap to clone since it just contains a list of VectorRef(which is a `Arc`).
#[derive(Debug, Clone)]
pub struct Batch {
    batch: Vec<VectorRef>,
    row_count: usize,
    /// describe if corresponding rows in batch is insert or delete, None means all rows are insert
    diffs: Option<VectorRef>,
}

impl From<common_recordbatch::RecordBatch> for Batch {
    fn from(value: common_recordbatch::RecordBatch) -> Self {
        Self {
            row_count: value.num_rows(),
            batch: value.columns,
            diffs: None,
        }
    }
}

impl PartialEq for Batch {
    fn eq(&self, other: &Self) -> bool {
        let mut batch_eq = true;
        if self.batch.len() != other.batch.len() {
            return false;
        }
        for (left, right) in self.batch.iter().zip(other.batch.iter()) {
            batch_eq = batch_eq
                && <dyn arrow::array::Array>::eq(&left.to_arrow_array(), &right.to_arrow_array());
        }

        let diff_eq = match (&self.diffs, &other.diffs) {
            (Some(left), Some(right)) => {
                <dyn arrow::array::Array>::eq(&left.to_arrow_array(), &right.to_arrow_array())
            }
            (None, None) => true,
            _ => false,
        };
        batch_eq && diff_eq && self.row_count == other.row_count
    }
}

impl Eq for Batch {}

impl Default for Batch {
    fn default() -> Self {
        Self::empty()
    }
}

impl Batch {
    /// Get batch from rows, will try best to determine data type
    pub fn try_from_rows_with_types(
        rows: Vec<crate::repr::Row>,
        batch_datatypes: &[ConcreteDataType],
    ) -> Result<Self, EvalError> {
        if rows.is_empty() {
            return Ok(Self::empty());
        }
        let len = rows.len();
        let mut builder = batch_datatypes
            .iter()
            .map(|ty| ty.create_mutable_vector(len))
            .collect_vec();
        for row in rows {
            ensure!(
                row.len() == builder.len(),
                InvalidArgumentSnafu {
                    reason: format!(
                        "row length not match, expect {}, found {}",
                        builder.len(),
                        row.len()
                    )
                }
            );
            for (idx, value) in row.iter().enumerate() {
                builder[idx]
                    .try_push_value_ref(value.as_value_ref())
                    .context(DataTypeSnafu {
                        msg: "Failed to convert rows to columns",
                    })?;
            }
        }

        let columns = builder.into_iter().map(|mut b| b.to_vector()).collect_vec();
        let batch = Self::try_new(columns, len)?;
        Ok(batch)
    }

    pub fn empty() -> Self {
        Self {
            batch: vec![],
            row_count: 0,
            diffs: None,
        }
    }
    pub fn try_new(batch: Vec<VectorRef>, row_count: usize) -> Result<Self, EvalError> {
        ensure!(
            batch.iter().map(|v| v.len()).all_equal()
                && batch.first().map(|v| v.len() == row_count).unwrap_or(true),
            InvalidArgumentSnafu {
                reason: "All columns should have same length".to_string()
            }
        );
        Ok(Self {
            batch,
            row_count,
            diffs: None,
        })
    }

    pub fn new_unchecked(batch: Vec<VectorRef>, row_count: usize) -> Self {
        Self {
            batch,
            row_count,
            diffs: None,
        }
    }

    pub fn batch(&self) -> &[VectorRef] {
        &self.batch
    }

    pub fn batch_mut(&mut self) -> &mut Vec<VectorRef> {
        &mut self.batch
    }

    pub fn row_count(&self) -> usize {
        self.row_count
    }

    pub fn set_row_count(&mut self, row_count: usize) {
        self.row_count = row_count;
    }

    pub fn column_count(&self) -> usize {
        self.batch.len()
    }

    pub fn get_row(&self, idx: usize) -> Result<Vec<Value>, EvalError> {
        ensure!(
            idx < self.row_count,
            InvalidArgumentSnafu {
                reason: format!(
                    "Expect row index to be less than {}, found {}",
                    self.row_count, idx
                )
            }
        );
        let mut ret = Vec::with_capacity(self.column_count());
        ret.extend(self.batch.iter().map(|v| v.get(idx)));
        Ok(ret)
    }

    /// Slices the `Batch`, returning a new `Batch`.
    pub fn slice(&self, offset: usize, length: usize) -> Result<Batch, EvalError> {
        let batch = self
            .batch()
            .iter()
            .map(|v| v.slice(offset, length))
            .collect_vec();
        Batch::try_new(batch, length)
    }

    /// append another batch to self
    ///
    /// NOTE: This is expensive since it will create new vectors for each column
    pub fn append_batch(&mut self, other: Batch) -> Result<(), EvalError> {
        ensure!(
            self.batch.len() == other.batch.len()
                || self.batch.is_empty()
                || other.batch.is_empty(),
            InvalidArgumentSnafu {
                reason: format!(
                    "Expect two batch to have same numbers of column, found {} and {} columns",
                    self.batch.len(),
                    other.batch.len()
                )
            }
        );

        if self.batch.is_empty() {
            self.batch = other.batch;
            self.row_count = other.row_count;
            return Ok(());
        } else if other.batch.is_empty() {
            return Ok(());
        }

        let dts = {
            let max_len = self.batch.len().max(other.batch.len());
            let mut dts = Vec::with_capacity(max_len);
            for i in 0..max_len {
                if let Some(v) = self.batch().get(i)
                    && !v.data_type().is_null()
                {
                    dts.push(v.data_type())
                } else if let Some(v) = other.batch().get(i)
                    && !v.data_type().is_null()
                {
                    dts.push(v.data_type())
                } else {
                    // both are null, so we will push null type
                    dts.push(datatypes::prelude::ConcreteDataType::null_datatype())
                }
            }

            dts
        };

        let batch_builders = dts
            .iter()
            .map(|dt| dt.create_mutable_vector(self.row_count() + other.row_count()))
            .collect_vec();

        let mut result = vec![];
        let self_row_count = self.row_count();
        let other_row_count = other.row_count();
        for (idx, mut builder) in batch_builders.into_iter().enumerate() {
            builder
                .extend_slice_of(self.batch()[idx].as_ref(), 0, self_row_count)
                .context(DataTypeSnafu {
                    msg: "Failed to extend vector",
                })?;
            builder
                .extend_slice_of(other.batch()[idx].as_ref(), 0, other_row_count)
                .context(DataTypeSnafu {
                    msg: "Failed to extend vector",
                })?;
            result.push(builder.to_vector());
        }
        self.batch = result;
        self.row_count = self_row_count + other_row_count;
        Ok(())
    }

    /// filter the batch with given predicate
    pub fn filter(&self, predicate: &BooleanVector) -> Result<Self, EvalError> {
        let len = predicate.as_boolean_array().true_count();
        let filter_builder = FilterBuilder::new(predicate.as_boolean_array()).optimize();
        let filter_pred = filter_builder.build();
        let filtered = self
            .batch()
            .iter()
            .map(|col| filter_pred.filter(col.to_arrow_array().as_ref()))
            .try_collect::<_, Vec<_>, _>()
            .context(ArrowSnafu {
                context: "Failed to filter val batches",
            })?;
        let res_vector = Helper::try_into_vectors(&filtered).context(DataTypeSnafu {
            msg: "can't convert arrow array to vector",
        })?;
        Self::try_new(res_vector, len)
    }
}

/// Vector with diff to note the insert and delete
pub(crate) struct VectorDiff {
    vector: VectorRef,
    diff: Option<VectorRef>,
}

impl From<VectorRef> for VectorDiff {
    fn from(vector: VectorRef) -> Self {
        Self { vector, diff: None }
    }
}

impl VectorDiff {
    fn len(&self) -> usize {
        self.vector.len()
    }

    fn try_new(vector: VectorRef, diff: Option<VectorRef>) -> Result<Self, EvalError> {
        ensure!(
            diff.as_ref().is_none_or(|diff| diff.len() == vector.len()),
            InvalidArgumentSnafu {
                reason: "Length of vector and diff should be the same"
            }
        );
        Ok(Self { vector, diff })
    }
}

impl IntoIterator for VectorDiff {
    type Item = (Value, Diff);
    type IntoIter = VectorDiffIter;

    fn into_iter(self) -> Self::IntoIter {
        VectorDiffIter {
            vector: self.vector,
            diff: self.diff,
            idx: 0,
        }
    }
}

/// iterator for VectorDiff
pub(crate) struct VectorDiffIter {
    vector: VectorRef,
    diff: Option<VectorRef>,
    idx: usize,
}

impl std::iter::Iterator for VectorDiffIter {
    type Item = (Value, Diff);

    fn next(&mut self) -> Option<Self::Item> {
        if self.idx >= self.vector.len() {
            return None;
        }
        let value = self.vector.get(self.idx);
        // +1 means insert, -1 means delete, and default to +1 insert when diff is not provided
        let diff = if let Some(diff) = self.diff.as_ref() {
            if let Ok(diff_at) = diff.get(self.idx).try_into() {
                diff_at
            } else {
                common_telemetry::warn!("Invalid diff value at index {}", self.idx);
                return None;
            }
        } else {
            1
        };

        self.idx += 1;
        Some((value, diff))
    }
}