flow/
df_optimizer.rs

1// Copyright 2023 Greptime Team
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15//! Datafusion optimizer for flow plan
16
17#![warn(unused)]
18
19use std::collections::{HashMap, HashSet};
20use std::sync::Arc;
21
22use common_error::ext::BoxedError;
23use common_telemetry::debug;
24use datafusion::config::ConfigOptions;
25use datafusion::error::DataFusionError;
26use datafusion::functions_aggregate::count::count_udaf;
27use datafusion::functions_aggregate::sum::sum_udaf;
28use datafusion::optimizer::analyzer::type_coercion::TypeCoercion;
29use datafusion::optimizer::common_subexpr_eliminate::CommonSubexprEliminate;
30use datafusion::optimizer::optimize_projections::OptimizeProjections;
31use datafusion::optimizer::simplify_expressions::SimplifyExpressions;
32use datafusion::optimizer::utils::NamePreserver;
33use datafusion::optimizer::{Analyzer, AnalyzerRule, Optimizer, OptimizerContext};
34use datafusion_common::tree_node::{
35    Transformed, TreeNode, TreeNodeRecursion, TreeNodeRewriter, TreeNodeVisitor,
36};
37use datafusion_common::{Column, DFSchema, ScalarValue};
38use datafusion_expr::utils::merge_schema;
39use datafusion_expr::{
40    BinaryExpr, ColumnarValue, Expr, Literal, Operator, Projection, ScalarFunctionArgs,
41    ScalarUDFImpl, Signature, TypeSignature, Volatility,
42};
43use query::QueryEngine;
44use query::optimizer::count_wildcard::CountWildcardToTimeIndexRule;
45use query::parser::QueryLanguageParser;
46use query::query_engine::DefaultSerializer;
47use session::context::QueryContextRef;
48use snafu::ResultExt;
49/// note here we are using the `substrait_proto_df` crate from the `substrait` module and
50/// rename it to `substrait_proto`
51use substrait::DFLogicalSubstraitConvertor;
52
53use crate::adapter::FlownodeContext;
54use crate::error::{DatafusionSnafu, Error, ExternalSnafu, UnexpectedSnafu};
55use crate::expr::{TUMBLE_END, TUMBLE_START};
56use crate::plan::TypedPlan;
57
58// TODO(discord9): use `Analyzer` to manage rules if more `AnalyzerRule` is needed
59pub async fn apply_df_optimizer(
60    plan: datafusion_expr::LogicalPlan,
61    query_ctx: &QueryContextRef,
62) -> Result<datafusion_expr::LogicalPlan, Error> {
63    let cfg = query_ctx.create_config_options();
64    let analyzer = Analyzer::with_rules(vec![
65        Arc::new(CountWildcardToTimeIndexRule),
66        Arc::new(AvgExpandRule),
67        Arc::new(TumbleExpandRule),
68        Arc::new(CheckGroupByRule::new()),
69        Arc::new(TypeCoercion::new()),
70    ]);
71    let plan = analyzer
72        .execute_and_check(plan, &cfg, |p, r| {
73            debug!("After apply rule {}, get plan: \n{:?}", r.name(), p);
74        })
75        .context(DatafusionSnafu {
76            context: "Fail to apply analyzer",
77        })?;
78
79    let ctx = OptimizerContext::new();
80    let optimizer = Optimizer::with_rules(vec![
81        Arc::new(OptimizeProjections::new()),
82        Arc::new(CommonSubexprEliminate::new()),
83        Arc::new(SimplifyExpressions::new()),
84    ]);
85    let plan = optimizer
86        .optimize(plan, &ctx, |_, _| {})
87        .context(DatafusionSnafu {
88            context: "Fail to apply optimizer",
89        })?;
90
91    Ok(plan)
92}
93
94/// To reuse existing code for parse sql, the sql is first parsed into a datafusion logical plan,
95/// then to a substrait plan, and finally to a flow plan.
96pub async fn sql_to_flow_plan(
97    ctx: &mut FlownodeContext,
98    engine: &Arc<dyn QueryEngine>,
99    sql: &str,
100) -> Result<TypedPlan, Error> {
101    let query_ctx = ctx.query_context.clone().ok_or_else(|| {
102        UnexpectedSnafu {
103            reason: "Query context is missing",
104        }
105        .build()
106    })?;
107    let stmt = QueryLanguageParser::parse_sql(sql, &query_ctx)
108        .map_err(BoxedError::new)
109        .context(ExternalSnafu)?;
110    let plan = engine
111        .planner()
112        .plan(&stmt, query_ctx.clone())
113        .await
114        .map_err(BoxedError::new)
115        .context(ExternalSnafu)?;
116
117    let opted_plan = apply_df_optimizer(plan, &query_ctx).await?;
118
119    // TODO(discord9): add df optimization
120    let sub_plan = DFLogicalSubstraitConvertor {}
121        .to_sub_plan(&opted_plan, DefaultSerializer)
122        .map_err(BoxedError::new)
123        .context(ExternalSnafu)?;
124
125    let flow_plan = TypedPlan::from_substrait_plan(ctx, &sub_plan).await?;
126
127    Ok(flow_plan)
128}
129
130#[derive(Debug)]
131struct AvgExpandRule;
132
133impl AnalyzerRule for AvgExpandRule {
134    fn analyze(
135        &self,
136        plan: datafusion_expr::LogicalPlan,
137        _config: &ConfigOptions,
138    ) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
139        let transformed = plan
140            .transform_up_with_subqueries(expand_avg_analyzer)?
141            .data
142            .transform_down_with_subqueries(put_aggr_to_proj_analyzer)?
143            .data;
144        Ok(transformed)
145    }
146
147    fn name(&self) -> &str {
148        "avg_expand"
149    }
150}
151
152/// lift aggr's composite aggr_expr to outer proj, and leave aggr only with simple direct aggr expr
153/// i.e.
154/// ```ignore
155/// proj: avg(x)
156/// -- aggr: [sum(x)/count(x) as avg(x)]
157/// ```
158/// becomes:
159/// ```ignore
160/// proj: sum(x)/count(x) as avg(x)
161/// -- aggr: [sum(x), count(x)]
162/// ```
163fn put_aggr_to_proj_analyzer(
164    plan: datafusion_expr::LogicalPlan,
165) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
166    if let datafusion_expr::LogicalPlan::Projection(proj) = &plan
167        && let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref()
168    {
169        let mut replace_old_proj_exprs = HashMap::new();
170        let mut expanded_aggr_exprs = vec![];
171        for aggr_expr in &aggr.aggr_expr {
172            let mut is_composite = false;
173            if let Expr::AggregateFunction(_) = &aggr_expr {
174                expanded_aggr_exprs.push(aggr_expr.clone());
175            } else {
176                let old_name = aggr_expr.name_for_alias()?;
177                let new_proj_expr = aggr_expr
178                    .clone()
179                    .transform(|ch| {
180                        if let Expr::AggregateFunction(_) = &ch {
181                            is_composite = true;
182                            expanded_aggr_exprs.push(ch.clone());
183                            Ok(Transformed::yes(Expr::Column(Column::from_qualified_name(
184                                ch.name_for_alias()?,
185                            ))))
186                        } else {
187                            Ok(Transformed::no(ch))
188                        }
189                    })?
190                    .data;
191                replace_old_proj_exprs.insert(old_name, new_proj_expr);
192            }
193        }
194
195        if expanded_aggr_exprs.len() > aggr.aggr_expr.len() {
196            let mut aggr = aggr.clone();
197            aggr.aggr_expr = expanded_aggr_exprs;
198            let mut aggr_plan = datafusion_expr::LogicalPlan::Aggregate(aggr);
199            // important to recompute schema after changing aggr_expr
200            aggr_plan = aggr_plan.recompute_schema()?;
201
202            // reconstruct proj with new proj_exprs
203            let mut new_proj_exprs = proj.expr.clone();
204            for proj_expr in new_proj_exprs.iter_mut() {
205                if let Some(new_proj_expr) =
206                    replace_old_proj_exprs.get(&proj_expr.name_for_alias()?)
207                {
208                    *proj_expr = new_proj_expr.clone();
209                }
210                *proj_expr = proj_expr
211                    .clone()
212                    .transform(|expr| {
213                        if let Some(new_expr) = replace_old_proj_exprs.get(&expr.name_for_alias()?)
214                        {
215                            Ok(Transformed::yes(new_expr.clone()))
216                        } else {
217                            Ok(Transformed::no(expr))
218                        }
219                    })?
220                    .data;
221            }
222            let proj = datafusion_expr::LogicalPlan::Projection(Projection::try_new(
223                new_proj_exprs,
224                Arc::new(aggr_plan),
225            )?);
226            return Ok(Transformed::yes(proj));
227        }
228    }
229    Ok(Transformed::no(plan))
230}
231
232/// expand `avg(<expr>)` function into `cast(sum((<expr>) AS f64)/count((<expr>)`
233fn expand_avg_analyzer(
234    plan: datafusion_expr::LogicalPlan,
235) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
236    let mut schema = merge_schema(&plan.inputs());
237
238    if let datafusion_expr::LogicalPlan::TableScan(ts) = &plan {
239        let source_schema =
240            DFSchema::try_from_qualified_schema(ts.table_name.clone(), &ts.source.schema())?;
241        schema.merge(&source_schema);
242    }
243
244    let mut expr_rewrite = ExpandAvgRewriter::new(&schema);
245
246    let name_preserver = NamePreserver::new(&plan);
247    // apply coercion rewrite all expressions in the plan individually
248    plan.map_expressions(|expr| {
249        let original_name = name_preserver.save(&expr);
250        Ok(expr
251            .rewrite(&mut expr_rewrite)?
252            .update_data(|expr| original_name.restore(expr)))
253    })?
254    .map_data(|plan| plan.recompute_schema())
255}
256
257/// rewrite `avg(<expr>)` function into `CASE WHEN count(<expr>) !=0 THEN  cast(sum((<expr>) AS avg_return_type)/count((<expr>) ELSE 0`
258///
259/// TODO(discord9): support avg return type decimal128
260///
261/// see impl details at https://github.com/apache/datafusion/blob/4ad4f90d86c57226a4e0fb1f79dfaaf0d404c273/datafusion/expr/src/type_coercion/aggregates.rs#L457-L462
262pub(crate) struct ExpandAvgRewriter<'a> {
263    /// schema of the plan
264    #[allow(unused)]
265    pub(crate) schema: &'a DFSchema,
266}
267
268impl<'a> ExpandAvgRewriter<'a> {
269    fn new(schema: &'a DFSchema) -> Self {
270        Self { schema }
271    }
272}
273
274impl TreeNodeRewriter for ExpandAvgRewriter<'_> {
275    type Node = Expr;
276
277    fn f_up(&mut self, expr: Expr) -> Result<Transformed<Expr>, DataFusionError> {
278        if let Expr::AggregateFunction(aggr_func) = &expr
279            && aggr_func.func.name() == "avg"
280        {
281            let sum_expr = {
282                let mut tmp = aggr_func.clone();
283                tmp.func = sum_udaf();
284                Expr::AggregateFunction(tmp)
285            };
286            let sum_cast = {
287                let mut tmp = sum_expr.clone();
288                tmp = Expr::Cast(datafusion_expr::Cast {
289                    expr: Box::new(tmp),
290                    data_type: arrow_schema::DataType::Float64,
291                });
292                tmp
293            };
294
295            let count_expr = {
296                let mut tmp = aggr_func.clone();
297                tmp.func = count_udaf();
298
299                Expr::AggregateFunction(tmp)
300            };
301            let count_expr_ref =
302                Expr::Column(Column::from_qualified_name(count_expr.name_for_alias()?));
303
304            let div = BinaryExpr::new(Box::new(sum_cast), Operator::Divide, Box::new(count_expr));
305            let div_expr = Box::new(Expr::BinaryExpr(div));
306
307            let zero = Box::new(0.lit());
308            let not_zero = BinaryExpr::new(Box::new(count_expr_ref), Operator::NotEq, zero.clone());
309            let not_zero = Box::new(Expr::BinaryExpr(not_zero));
310            let null = Box::new(Expr::Literal(ScalarValue::Null, None));
311
312            let case_when =
313                datafusion_expr::Case::new(None, vec![(not_zero, div_expr)], Some(null));
314            let case_when_expr = Expr::Case(case_when);
315
316            return Ok(Transformed::yes(case_when_expr));
317        }
318
319        Ok(Transformed::no(expr))
320    }
321}
322
323/// expand tumble in aggr expr to tumble_start and tumble_end with column name like `window_start`
324#[derive(Debug)]
325struct TumbleExpandRule;
326
327impl AnalyzerRule for TumbleExpandRule {
328    fn analyze(
329        &self,
330        plan: datafusion_expr::LogicalPlan,
331        _config: &ConfigOptions,
332    ) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
333        let transformed = plan
334            .transform_up_with_subqueries(expand_tumble_analyzer)?
335            .data;
336        Ok(transformed)
337    }
338
339    fn name(&self) -> &str {
340        "tumble_expand"
341    }
342}
343
344/// expand `tumble` in aggr expr to `tumble_start` and `tumble_end`, also expand related alias and column ref
345///
346/// will add `tumble_start` and `tumble_end` to outer projection if not exist before
347fn expand_tumble_analyzer(
348    plan: datafusion_expr::LogicalPlan,
349) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
350    if let datafusion_expr::LogicalPlan::Projection(proj) = &plan
351        && let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref()
352    {
353        let mut new_group_expr = vec![];
354        let mut alias_to_expand = HashMap::new();
355        let mut encountered_tumble = false;
356        for expr in aggr.group_expr.iter() {
357            match expr {
358                datafusion_expr::Expr::ScalarFunction(func) if func.name() == "tumble" => {
359                    encountered_tumble = true;
360
361                    let tumble_start = TumbleExpand::new(TUMBLE_START);
362                    let tumble_start = datafusion_expr::expr::ScalarFunction::new_udf(
363                        Arc::new(tumble_start.into()),
364                        func.args.clone(),
365                    );
366                    let tumble_start = datafusion_expr::Expr::ScalarFunction(tumble_start);
367                    let start_col_name = tumble_start.name_for_alias()?;
368                    new_group_expr.push(tumble_start);
369
370                    let tumble_end = TumbleExpand::new(TUMBLE_END);
371                    let tumble_end = datafusion_expr::expr::ScalarFunction::new_udf(
372                        Arc::new(tumble_end.into()),
373                        func.args.clone(),
374                    );
375                    let tumble_end = datafusion_expr::Expr::ScalarFunction(tumble_end);
376                    let end_col_name = tumble_end.name_for_alias()?;
377                    new_group_expr.push(tumble_end);
378
379                    alias_to_expand.insert(expr.name_for_alias()?, (start_col_name, end_col_name));
380                }
381                _ => new_group_expr.push(expr.clone()),
382            }
383        }
384        if !encountered_tumble {
385            return Ok(Transformed::no(plan));
386        }
387        let mut new_aggr = aggr.clone();
388        new_aggr.group_expr = new_group_expr;
389        let new_aggr = datafusion_expr::LogicalPlan::Aggregate(new_aggr).recompute_schema()?;
390        // replace alias in projection if needed, and add new column ref if necessary
391        let mut new_proj_expr = vec![];
392        let mut have_expanded = false;
393
394        for proj_expr in proj.expr.iter() {
395            if let Some((start_col_name, end_col_name)) =
396                alias_to_expand.get(&proj_expr.name_for_alias()?)
397            {
398                let start_col = Column::from_qualified_name(start_col_name);
399                let end_col = Column::from_qualified_name(end_col_name);
400                new_proj_expr.push(datafusion_expr::Expr::Column(start_col));
401                new_proj_expr.push(datafusion_expr::Expr::Column(end_col));
402                have_expanded = true;
403            } else {
404                new_proj_expr.push(proj_expr.clone());
405            }
406        }
407
408        // append to end of projection if not exist
409        if !have_expanded {
410            for (start_col_name, end_col_name) in alias_to_expand.values() {
411                let start_col = Column::from_qualified_name(start_col_name);
412                let end_col = Column::from_qualified_name(end_col_name);
413                new_proj_expr.push(datafusion_expr::Expr::Column(start_col).alias("window_start"));
414                new_proj_expr.push(datafusion_expr::Expr::Column(end_col).alias("window_end"));
415            }
416        }
417
418        let new_proj = datafusion_expr::LogicalPlan::Projection(Projection::try_new(
419            new_proj_expr,
420            Arc::new(new_aggr),
421        )?);
422        return Ok(Transformed::yes(new_proj));
423    }
424
425    Ok(Transformed::no(plan))
426}
427
428/// This is a placeholder for tumble_start and tumble_end function, so that datafusion can
429/// recognize them as scalar function
430#[derive(Debug)]
431pub struct TumbleExpand {
432    signature: Signature,
433    name: String,
434}
435
436impl TumbleExpand {
437    pub fn new(name: &str) -> Self {
438        Self {
439            signature: Signature::new(TypeSignature::UserDefined, Volatility::Immutable),
440            name: name.to_string(),
441        }
442    }
443}
444
445impl ScalarUDFImpl for TumbleExpand {
446    fn as_any(&self) -> &dyn std::any::Any {
447        self
448    }
449
450    fn name(&self) -> &str {
451        &self.name
452    }
453
454    /// elide the signature for now
455    fn signature(&self) -> &Signature {
456        &self.signature
457    }
458
459    fn coerce_types(
460        &self,
461        arg_types: &[arrow_schema::DataType],
462    ) -> datafusion_common::Result<Vec<arrow_schema::DataType>> {
463        match (arg_types.first(), arg_types.get(1), arg_types.get(2)) {
464            (Some(ts), Some(window), opt) => {
465                use arrow_schema::DataType::*;
466                if !matches!(ts, Date32 | Timestamp(_, _)) {
467                    return Err(DataFusionError::Plan(
468                        format!("Expect timestamp column as first arg for tumble_start, found {:?}", ts)
469                    ));
470                }
471                if !matches!(window, Utf8 | Interval(_)) {
472                    return Err(DataFusionError::Plan(
473                        format!("Expect second arg for window size's type being interval for tumble_start, found {:?}", window),
474                    ));
475                }
476
477                if let Some(start_time) = opt
478                    && !matches!(start_time,  Utf8 | Date32 | Timestamp(_, _)){
479                        return Err(DataFusionError::Plan(
480                            format!("Expect start_time to either be date, timestamp or string, found {:?}", start_time)
481                        ));
482                    }
483
484                Ok(arg_types.to_vec())
485            }
486            _ => Err(DataFusionError::Plan(
487                "Expect tumble function have at least two arg(timestamp column and window size) and a third optional arg for starting time".to_string(),
488            )),
489        }
490    }
491
492    fn return_type(
493        &self,
494        arg_types: &[arrow_schema::DataType],
495    ) -> Result<arrow_schema::DataType, DataFusionError> {
496        arg_types.first().cloned().ok_or_else(|| {
497            DataFusionError::Plan(
498                "Expect tumble function have at least two arg(timestamp column and window size)"
499                    .to_string(),
500            )
501        })
502    }
503
504    fn invoke_with_args(
505        &self,
506        _args: ScalarFunctionArgs,
507    ) -> datafusion_common::Result<ColumnarValue> {
508        Err(DataFusionError::Plan(
509            "This function should not be executed by datafusion".to_string(),
510        ))
511    }
512}
513
514/// This rule check all group by exprs, and make sure they are also in select clause in a aggr query
515#[derive(Debug)]
516struct CheckGroupByRule {}
517
518impl CheckGroupByRule {
519    pub fn new() -> Self {
520        Self {}
521    }
522}
523
524impl AnalyzerRule for CheckGroupByRule {
525    fn analyze(
526        &self,
527        plan: datafusion_expr::LogicalPlan,
528        _config: &ConfigOptions,
529    ) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
530        let transformed = plan
531            .transform_up_with_subqueries(check_group_by_analyzer)?
532            .data;
533        Ok(transformed)
534    }
535
536    fn name(&self) -> &str {
537        "check_groupby"
538    }
539}
540
541/// make sure everything in group by's expr is in select
542fn check_group_by_analyzer(
543    plan: datafusion_expr::LogicalPlan,
544) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
545    if let datafusion_expr::LogicalPlan::Projection(proj) = &plan
546        && let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref()
547    {
548        let mut found_column_used = FindColumn::new();
549        proj.expr
550            .iter()
551            .map(|i| i.visit(&mut found_column_used))
552            .count();
553        for expr in aggr.group_expr.iter() {
554            if !found_column_used
555                .names_for_alias
556                .contains(&expr.name_for_alias()?)
557            {
558                return Err(DataFusionError::Plan(format!(
559                    "Expect {} expr in group by also exist in select list, but select list only contain {:?}",
560                    expr.name_for_alias()?,
561                    found_column_used.names_for_alias
562                )));
563            }
564        }
565    }
566
567    Ok(Transformed::no(plan))
568}
569
570/// Find all column names in a plan
571#[derive(Debug, Default)]
572struct FindColumn {
573    names_for_alias: HashSet<String>,
574}
575
576impl FindColumn {
577    fn new() -> Self {
578        Default::default()
579    }
580}
581
582impl TreeNodeVisitor<'_> for FindColumn {
583    type Node = datafusion_expr::Expr;
584    fn f_down(
585        &mut self,
586        node: &datafusion_expr::Expr,
587    ) -> Result<TreeNodeRecursion, DataFusionError> {
588        if let datafusion_expr::Expr::Column(_) = node {
589            self.names_for_alias.insert(node.name_for_alias()?);
590        }
591        Ok(TreeNodeRecursion::Continue)
592    }
593}