flow/
df_optimizer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Datafusion optimizer for flow plan

#![warn(unused)]

use std::collections::{HashMap, HashSet};
use std::sync::Arc;

use common_error::ext::BoxedError;
use common_telemetry::debug;
use datafusion::config::ConfigOptions;
use datafusion::error::DataFusionError;
use datafusion::functions_aggregate::count::count_udaf;
use datafusion::functions_aggregate::sum::sum_udaf;
use datafusion::optimizer::analyzer::count_wildcard_rule::CountWildcardRule;
use datafusion::optimizer::analyzer::type_coercion::TypeCoercion;
use datafusion::optimizer::common_subexpr_eliminate::CommonSubexprEliminate;
use datafusion::optimizer::optimize_projections::OptimizeProjections;
use datafusion::optimizer::simplify_expressions::SimplifyExpressions;
use datafusion::optimizer::unwrap_cast_in_comparison::UnwrapCastInComparison;
use datafusion::optimizer::utils::NamePreserver;
use datafusion::optimizer::{Analyzer, AnalyzerRule, Optimizer, OptimizerContext};
use datafusion_common::tree_node::{
    Transformed, TreeNode, TreeNodeRecursion, TreeNodeRewriter, TreeNodeVisitor,
};
use datafusion_common::{Column, DFSchema, ScalarValue};
use datafusion_expr::utils::merge_schema;
use datafusion_expr::{
    BinaryExpr, Expr, Operator, Projection, ScalarUDFImpl, Signature, TypeSignature, Volatility,
};
use query::parser::QueryLanguageParser;
use query::query_engine::DefaultSerializer;
use query::QueryEngine;
use snafu::ResultExt;
/// note here we are using the `substrait_proto_df` crate from the `substrait` module and
/// rename it to `substrait_proto`
use substrait::DFLogicalSubstraitConvertor;

use crate::adapter::FlownodeContext;
use crate::error::{DatafusionSnafu, Error, ExternalSnafu, UnexpectedSnafu};
use crate::expr::{TUMBLE_END, TUMBLE_START};
use crate::plan::TypedPlan;

// TODO(discord9): use `Analyzer` to manage rules if more `AnalyzerRule` is needed
pub async fn apply_df_optimizer(
    plan: datafusion_expr::LogicalPlan,
) -> Result<datafusion_expr::LogicalPlan, Error> {
    let cfg = ConfigOptions::new();
    let analyzer = Analyzer::with_rules(vec![
        Arc::new(CountWildcardRule::new()),
        Arc::new(AvgExpandRule::new()),
        Arc::new(TumbleExpandRule::new()),
        Arc::new(CheckGroupByRule::new()),
        Arc::new(TypeCoercion::new()),
    ]);
    let plan = analyzer
        .execute_and_check(plan, &cfg, |p, r| {
            debug!("After apply rule {}, get plan: \n{:?}", r.name(), p);
        })
        .context(DatafusionSnafu {
            context: "Fail to apply analyzer",
        })?;

    let ctx = OptimizerContext::new();
    let optimizer = Optimizer::with_rules(vec![
        Arc::new(OptimizeProjections::new()),
        Arc::new(CommonSubexprEliminate::new()),
        Arc::new(SimplifyExpressions::new()),
        Arc::new(UnwrapCastInComparison::new()),
    ]);
    let plan = optimizer
        .optimize(plan, &ctx, |_, _| {})
        .context(DatafusionSnafu {
            context: "Fail to apply optimizer",
        })?;

    Ok(plan)
}

/// To reuse existing code for parse sql, the sql is first parsed into a datafusion logical plan,
/// then to a substrait plan, and finally to a flow plan.
pub async fn sql_to_flow_plan(
    ctx: &mut FlownodeContext,
    engine: &Arc<dyn QueryEngine>,
    sql: &str,
) -> Result<TypedPlan, Error> {
    let query_ctx = ctx.query_context.clone().ok_or_else(|| {
        UnexpectedSnafu {
            reason: "Query context is missing",
        }
        .build()
    })?;
    let stmt = QueryLanguageParser::parse_sql(sql, &query_ctx)
        .map_err(BoxedError::new)
        .context(ExternalSnafu)?;
    let plan = engine
        .planner()
        .plan(&stmt, query_ctx)
        .await
        .map_err(BoxedError::new)
        .context(ExternalSnafu)?;

    let opted_plan = apply_df_optimizer(plan).await?;

    // TODO(discord9): add df optimization
    let sub_plan = DFLogicalSubstraitConvertor {}
        .to_sub_plan(&opted_plan, DefaultSerializer)
        .map_err(BoxedError::new)
        .context(ExternalSnafu)?;

    let flow_plan = TypedPlan::from_substrait_plan(ctx, &sub_plan).await?;

    Ok(flow_plan)
}

#[derive(Debug)]
struct AvgExpandRule {}

impl AvgExpandRule {
    pub fn new() -> Self {
        Self {}
    }
}

impl AnalyzerRule for AvgExpandRule {
    fn analyze(
        &self,
        plan: datafusion_expr::LogicalPlan,
        _config: &ConfigOptions,
    ) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
        let transformed = plan
            .transform_up_with_subqueries(expand_avg_analyzer)?
            .data
            .transform_down_with_subqueries(put_aggr_to_proj_analyzer)?
            .data;
        Ok(transformed)
    }

    fn name(&self) -> &str {
        "avg_expand"
    }
}

/// lift aggr's composite aggr_expr to outer proj, and leave aggr only with simple direct aggr expr
/// i.e.
/// ```ignore
/// proj: avg(x)
/// -- aggr: [sum(x)/count(x) as avg(x)]
/// ```
/// becomes:
/// ```ignore
/// proj: sum(x)/count(x) as avg(x)
/// -- aggr: [sum(x), count(x)]
/// ```
fn put_aggr_to_proj_analyzer(
    plan: datafusion_expr::LogicalPlan,
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
    if let datafusion_expr::LogicalPlan::Projection(proj) = &plan {
        if let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref() {
            let mut replace_old_proj_exprs = HashMap::new();
            let mut expanded_aggr_exprs = vec![];
            for aggr_expr in &aggr.aggr_expr {
                let mut is_composite = false;
                if let Expr::AggregateFunction(_) = &aggr_expr {
                    expanded_aggr_exprs.push(aggr_expr.clone());
                } else {
                    let old_name = aggr_expr.name_for_alias()?;
                    let new_proj_expr = aggr_expr
                        .clone()
                        .transform(|ch| {
                            if let Expr::AggregateFunction(_) = &ch {
                                is_composite = true;
                                expanded_aggr_exprs.push(ch.clone());
                                Ok(Transformed::yes(Expr::Column(Column::from_qualified_name(
                                    ch.name_for_alias()?,
                                ))))
                            } else {
                                Ok(Transformed::no(ch))
                            }
                        })?
                        .data;
                    replace_old_proj_exprs.insert(old_name, new_proj_expr);
                }
            }

            if expanded_aggr_exprs.len() > aggr.aggr_expr.len() {
                let mut aggr = aggr.clone();
                aggr.aggr_expr = expanded_aggr_exprs;
                let mut aggr_plan = datafusion_expr::LogicalPlan::Aggregate(aggr);
                // important to recompute schema after changing aggr_expr
                aggr_plan = aggr_plan.recompute_schema()?;

                // reconstruct proj with new proj_exprs
                let mut new_proj_exprs = proj.expr.clone();
                for proj_expr in new_proj_exprs.iter_mut() {
                    if let Some(new_proj_expr) =
                        replace_old_proj_exprs.get(&proj_expr.name_for_alias()?)
                    {
                        *proj_expr = new_proj_expr.clone();
                    }
                    *proj_expr = proj_expr
                        .clone()
                        .transform(|expr| {
                            if let Some(new_expr) =
                                replace_old_proj_exprs.get(&expr.name_for_alias()?)
                            {
                                Ok(Transformed::yes(new_expr.clone()))
                            } else {
                                Ok(Transformed::no(expr))
                            }
                        })?
                        .data;
                }
                let proj = datafusion_expr::LogicalPlan::Projection(Projection::try_new(
                    new_proj_exprs,
                    Arc::new(aggr_plan),
                )?);
                return Ok(Transformed::yes(proj));
            }
        }
    }
    Ok(Transformed::no(plan))
}

/// expand `avg(<expr>)` function into `cast(sum((<expr>) AS f64)/count((<expr>)`
fn expand_avg_analyzer(
    plan: datafusion_expr::LogicalPlan,
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
    let mut schema = merge_schema(&plan.inputs());

    if let datafusion_expr::LogicalPlan::TableScan(ts) = &plan {
        let source_schema =
            DFSchema::try_from_qualified_schema(ts.table_name.clone(), &ts.source.schema())?;
        schema.merge(&source_schema);
    }

    let mut expr_rewrite = ExpandAvgRewriter::new(&schema);

    let name_preserver = NamePreserver::new(&plan);
    // apply coercion rewrite all expressions in the plan individually
    plan.map_expressions(|expr| {
        let original_name = name_preserver.save(&expr);
        Ok(expr
            .rewrite(&mut expr_rewrite)?
            .update_data(|expr| original_name.restore(expr)))
    })?
    .map_data(|plan| plan.recompute_schema())
}

/// rewrite `avg(<expr>)` function into `CASE WHEN count(<expr>) !=0 THEN  cast(sum((<expr>) AS avg_return_type)/count((<expr>) ELSE 0`
///
/// TODO(discord9): support avg return type decimal128
///
/// see impl details at https://github.com/apache/datafusion/blob/4ad4f90d86c57226a4e0fb1f79dfaaf0d404c273/datafusion/expr/src/type_coercion/aggregates.rs#L457-L462
pub(crate) struct ExpandAvgRewriter<'a> {
    /// schema of the plan
    #[allow(unused)]
    pub(crate) schema: &'a DFSchema,
}

impl<'a> ExpandAvgRewriter<'a> {
    fn new(schema: &'a DFSchema) -> Self {
        Self { schema }
    }
}

impl TreeNodeRewriter for ExpandAvgRewriter<'_> {
    type Node = Expr;

    fn f_up(&mut self, expr: Expr) -> Result<Transformed<Expr>, DataFusionError> {
        if let Expr::AggregateFunction(aggr_func) = &expr {
            if aggr_func.func.name() == "avg" {
                let sum_expr = {
                    let mut tmp = aggr_func.clone();
                    tmp.func = sum_udaf();
                    Expr::AggregateFunction(tmp)
                };
                let sum_cast = {
                    let mut tmp = sum_expr.clone();
                    tmp = Expr::Cast(datafusion_expr::Cast {
                        expr: Box::new(tmp),
                        data_type: arrow_schema::DataType::Float64,
                    });
                    tmp
                };

                let count_expr = {
                    let mut tmp = aggr_func.clone();
                    tmp.func = count_udaf();

                    Expr::AggregateFunction(tmp)
                };
                let count_expr_ref =
                    Expr::Column(Column::from_qualified_name(count_expr.name_for_alias()?));

                let div =
                    BinaryExpr::new(Box::new(sum_cast), Operator::Divide, Box::new(count_expr));
                let div_expr = Box::new(Expr::BinaryExpr(div));

                let zero = Box::new(Expr::Literal(ScalarValue::Int64(Some(0))));
                let not_zero =
                    BinaryExpr::new(Box::new(count_expr_ref), Operator::NotEq, zero.clone());
                let not_zero = Box::new(Expr::BinaryExpr(not_zero));
                let null = Box::new(Expr::Literal(ScalarValue::Null));

                let case_when =
                    datafusion_expr::Case::new(None, vec![(not_zero, div_expr)], Some(null));
                let case_when_expr = Expr::Case(case_when);

                return Ok(Transformed::yes(case_when_expr));
            }
        }

        Ok(Transformed::no(expr))
    }
}

/// expand tumble in aggr expr to tumble_start and tumble_end with column name like `window_start`
#[derive(Debug)]
struct TumbleExpandRule {}

impl TumbleExpandRule {
    pub fn new() -> Self {
        Self {}
    }
}

impl AnalyzerRule for TumbleExpandRule {
    fn analyze(
        &self,
        plan: datafusion_expr::LogicalPlan,
        _config: &ConfigOptions,
    ) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
        let transformed = plan
            .transform_up_with_subqueries(expand_tumble_analyzer)?
            .data;
        Ok(transformed)
    }

    fn name(&self) -> &str {
        "tumble_expand"
    }
}

/// expand `tumble` in aggr expr to `tumble_start` and `tumble_end`, also expand related alias and column ref
///
/// will add `tumble_start` and `tumble_end` to outer projection if not exist before
fn expand_tumble_analyzer(
    plan: datafusion_expr::LogicalPlan,
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
    if let datafusion_expr::LogicalPlan::Projection(proj) = &plan {
        if let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref() {
            let mut new_group_expr = vec![];
            let mut alias_to_expand = HashMap::new();
            let mut encountered_tumble = false;
            for expr in aggr.group_expr.iter() {
                match expr {
                    datafusion_expr::Expr::ScalarFunction(func) if func.name() == "tumble" => {
                        encountered_tumble = true;

                        let tumble_start = TumbleExpand::new(TUMBLE_START);
                        let tumble_start = datafusion_expr::expr::ScalarFunction::new_udf(
                            Arc::new(tumble_start.into()),
                            func.args.clone(),
                        );
                        let tumble_start = datafusion_expr::Expr::ScalarFunction(tumble_start);
                        let start_col_name = tumble_start.name_for_alias()?;
                        new_group_expr.push(tumble_start);

                        let tumble_end = TumbleExpand::new(TUMBLE_END);
                        let tumble_end = datafusion_expr::expr::ScalarFunction::new_udf(
                            Arc::new(tumble_end.into()),
                            func.args.clone(),
                        );
                        let tumble_end = datafusion_expr::Expr::ScalarFunction(tumble_end);
                        let end_col_name = tumble_end.name_for_alias()?;
                        new_group_expr.push(tumble_end);

                        alias_to_expand
                            .insert(expr.name_for_alias()?, (start_col_name, end_col_name));
                    }
                    _ => new_group_expr.push(expr.clone()),
                }
            }
            if !encountered_tumble {
                return Ok(Transformed::no(plan));
            }
            let mut new_aggr = aggr.clone();
            new_aggr.group_expr = new_group_expr;
            let new_aggr = datafusion_expr::LogicalPlan::Aggregate(new_aggr).recompute_schema()?;
            // replace alias in projection if needed, and add new column ref if necessary
            let mut new_proj_expr = vec![];
            let mut have_expanded = false;

            for proj_expr in proj.expr.iter() {
                if let Some((start_col_name, end_col_name)) =
                    alias_to_expand.get(&proj_expr.name_for_alias()?)
                {
                    let start_col = Column::from_qualified_name(start_col_name);
                    let end_col = Column::from_qualified_name(end_col_name);
                    new_proj_expr.push(datafusion_expr::Expr::Column(start_col));
                    new_proj_expr.push(datafusion_expr::Expr::Column(end_col));
                    have_expanded = true;
                } else {
                    new_proj_expr.push(proj_expr.clone());
                }
            }

            // append to end of projection if not exist
            if !have_expanded {
                for (start_col_name, end_col_name) in alias_to_expand.values() {
                    let start_col = Column::from_qualified_name(start_col_name);
                    let end_col = Column::from_qualified_name(end_col_name);
                    new_proj_expr
                        .push(datafusion_expr::Expr::Column(start_col).alias("window_start"));
                    new_proj_expr.push(datafusion_expr::Expr::Column(end_col).alias("window_end"));
                }
            }

            let new_proj = datafusion_expr::LogicalPlan::Projection(Projection::try_new(
                new_proj_expr,
                Arc::new(new_aggr),
            )?);
            return Ok(Transformed::yes(new_proj));
        }
    }

    Ok(Transformed::no(plan))
}

/// This is a placeholder for tumble_start and tumble_end function, so that datafusion can
/// recognize them as scalar function
#[derive(Debug)]
pub struct TumbleExpand {
    signature: Signature,
    name: String,
}

impl TumbleExpand {
    pub fn new(name: &str) -> Self {
        Self {
            signature: Signature::new(TypeSignature::UserDefined, Volatility::Immutable),
            name: name.to_string(),
        }
    }
}

impl ScalarUDFImpl for TumbleExpand {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn name(&self) -> &str {
        &self.name
    }

    /// elide the signature for now
    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn coerce_types(
        &self,
        arg_types: &[arrow_schema::DataType],
    ) -> datafusion_common::Result<Vec<arrow_schema::DataType>> {
        match (arg_types.first(), arg_types.get(1), arg_types.get(2)) {
            (Some(ts), Some(window), opt) => {
                use arrow_schema::DataType::*;
                if !matches!(ts, Date32 | Timestamp(_, _)) {
                    return Err(DataFusionError::Plan(
                        format!("Expect timestamp column as first arg for tumble_start, found {:?}", ts)
                    ));
                }
                if !matches!(window, Utf8 | Interval(_)) {
                    return Err(DataFusionError::Plan(
                        format!("Expect second arg for window size's type being interval for tumble_start, found {:?}", window),
                    ));
                }

                if let Some(start_time) = opt{
                    if !matches!(start_time,  Utf8 | Date32 | Timestamp(_, _)){
                        return Err(DataFusionError::Plan(
                            format!("Expect start_time to either be date, timestamp or string, found {:?}", start_time)
                        ));
                    }
                }

                Ok(arg_types.to_vec())
            }
            _ => Err(DataFusionError::Plan(
                "Expect tumble function have at least two arg(timestamp column and window size) and a third optional arg for starting time".to_string(),
            )),
        }
    }

    fn return_type(
        &self,
        arg_types: &[arrow_schema::DataType],
    ) -> Result<arrow_schema::DataType, DataFusionError> {
        arg_types.first().cloned().ok_or_else(|| {
            DataFusionError::Plan(
                "Expect tumble function have at least two arg(timestamp column and window size)"
                    .to_string(),
            )
        })
    }

    fn invoke(
        &self,
        _args: &[datafusion_expr::ColumnarValue],
    ) -> Result<datafusion_expr::ColumnarValue, DataFusionError> {
        Err(DataFusionError::Plan(
            "This function should not be executed by datafusion".to_string(),
        ))
    }
}

/// This rule check all group by exprs, and make sure they are also in select clause in a aggr query
#[derive(Debug)]
struct CheckGroupByRule {}

impl CheckGroupByRule {
    pub fn new() -> Self {
        Self {}
    }
}

impl AnalyzerRule for CheckGroupByRule {
    fn analyze(
        &self,
        plan: datafusion_expr::LogicalPlan,
        _config: &ConfigOptions,
    ) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
        let transformed = plan
            .transform_up_with_subqueries(check_group_by_analyzer)?
            .data;
        Ok(transformed)
    }

    fn name(&self) -> &str {
        "check_groupby"
    }
}

/// make sure everything in group by's expr is in select
fn check_group_by_analyzer(
    plan: datafusion_expr::LogicalPlan,
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
    if let datafusion_expr::LogicalPlan::Projection(proj) = &plan {
        if let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref() {
            let mut found_column_used = FindColumn::new();
            proj.expr
                .iter()
                .map(|i| i.visit(&mut found_column_used))
                .count();
            for expr in aggr.group_expr.iter() {
                if !found_column_used
                    .names_for_alias
                    .contains(&expr.name_for_alias()?)
                {
                    return Err(DataFusionError::Plan(format!("Expect {} expr in group by also exist in select list, but select list only contain {:?}",expr.name_for_alias()?, found_column_used.names_for_alias)));
                }
            }
        }
    }

    Ok(Transformed::no(plan))
}

/// Find all column names in a plan
#[derive(Debug, Default)]
struct FindColumn {
    names_for_alias: HashSet<String>,
}

impl FindColumn {
    fn new() -> Self {
        Default::default()
    }
}

impl TreeNodeVisitor<'_> for FindColumn {
    type Node = datafusion_expr::Expr;
    fn f_down(
        &mut self,
        node: &datafusion_expr::Expr,
    ) -> Result<TreeNodeRecursion, DataFusionError> {
        if let datafusion_expr::Expr::Column(_) = node {
            self.names_for_alias.insert(node.name_for_alias()?);
        }
        Ok(TreeNodeRecursion::Continue)
    }
}