flow/compute/types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cell::RefCell;
use std::collections::{BTreeMap, VecDeque};
use std::rc::Rc;
use std::sync::Arc;
use common_error::ext::ErrorExt;
use hydroflow::scheduled::graph::Hydroflow;
use hydroflow::scheduled::handoff::TeeingHandoff;
use hydroflow::scheduled::port::RecvPort;
use hydroflow::scheduled::SubgraphId;
use itertools::Itertools;
use tokio::sync::Mutex;
use crate::expr::{Batch, EvalError, ScalarExpr};
use crate::metrics::METRIC_FLOW_ERRORS;
use crate::repr::DiffRow;
use crate::utils::ArrangeHandler;
pub type Toff<T = DiffRow> = TeeingHandoff<T>;
/// A collection, represent a collections of data that is received from a handoff.
pub struct Collection<T: 'static> {
/// represent a stream of updates recv from this port
stream: RecvPort<TeeingHandoff<T>>,
}
impl<T: 'static + Clone> Collection<T> {
pub fn from_port(port: RecvPort<TeeingHandoff<T>>) -> Self {
Collection { stream: port }
}
/// clone a collection, require a mutable reference to the hydroflow instance
///
/// Note: need to be the same hydroflow instance that this collection is created from
pub fn clone(&self, df: &mut Hydroflow) -> Self {
Collection {
stream: self.stream.tee(df),
}
}
pub fn into_inner(self) -> RecvPort<TeeingHandoff<T>> {
self.stream
}
}
/// Arranged is a wrapper around `ArrangeHandler` that maintain a list of readers and a writer
pub struct Arranged {
pub arrangement: ArrangeHandler,
pub writer: Rc<RefCell<Option<SubgraphId>>>,
/// maintain a list of readers for the arrangement for the ease of scheduling
pub readers: Rc<RefCell<Vec<SubgraphId>>>,
}
impl Arranged {
pub fn new(arr: ArrangeHandler) -> Self {
Self {
arrangement: arr,
writer: Default::default(),
readers: Default::default(),
}
}
/// Copy it's future only updates, internally `Rc-ed` so it's cheap to copy
pub fn try_copy_future(&self) -> Option<Self> {
self.arrangement
.clone_future_only()
.map(|arrangement| Arranged {
arrangement,
readers: self.readers.clone(),
writer: self.writer.clone(),
})
}
}
/// A bundle of the various ways a collection can be represented.
///
/// This type maintains the invariant that it does contain at least one(or both) valid
/// source of data, either a collection or at least one arrangement. This is for convenience
/// of reading the data from the collection.
///
// TODO(discord9): make T default to Batch and obsolete the Row Mode
pub struct CollectionBundle<T: 'static = DiffRow> {
/// This is useful for passively reading the new updates from the collection
///
/// Invariant: the timestamp of the updates should always not greater than now, since future updates should be stored in the arrangement
pub collection: Collection<T>,
/// the key [`ScalarExpr`] indicate how the keys(also a [`Row`]) used in Arranged is extract from collection's [`Row`]
/// So it is the "index" of the arrangement
///
/// The `Arranged` is the actual data source, it can be used to read the data from the collection by
/// using the key indicated by the `Vec<ScalarExpr>`
/// There is a false positive in using `Vec<ScalarExpr>` as key due to `ScalarExpr::Literal`
/// contain a `Value` which have `bytes` variant
#[allow(clippy::mutable_key_type)]
pub arranged: BTreeMap<Vec<ScalarExpr>, Arranged>,
}
pub trait GenericBundle {
fn is_batch(&self) -> bool;
fn try_as_batch(&self) -> Option<&CollectionBundle<Batch>> {
None
}
fn try_as_row(&self) -> Option<&CollectionBundle<DiffRow>> {
None
}
}
impl GenericBundle for CollectionBundle<Batch> {
fn is_batch(&self) -> bool {
true
}
fn try_as_batch(&self) -> Option<&CollectionBundle<Batch>> {
Some(self)
}
}
impl GenericBundle for CollectionBundle<DiffRow> {
fn is_batch(&self) -> bool {
false
}
fn try_as_row(&self) -> Option<&CollectionBundle<DiffRow>> {
Some(self)
}
}
impl<T: 'static> CollectionBundle<T> {
pub fn from_collection(collection: Collection<T>) -> Self {
Self {
collection,
arranged: BTreeMap::default(),
}
}
}
impl<T: 'static + Clone> CollectionBundle<T> {
pub fn clone(&self, df: &mut Hydroflow) -> Self {
Self {
collection: self.collection.clone(df),
arranged: self
.arranged
.iter()
.map(|(k, v)| (k.clone(), v.try_copy_future().unwrap()))
.collect(),
}
}
}
/// A thread local error collector, used to collect errors during the evaluation of the plan
///
/// usually only the first error matters, but store all of them just in case
///
/// Using a `VecDeque` to preserve the order of errors
/// when running dataflow continuously and need errors in order
#[derive(Debug, Default, Clone)]
pub struct ErrCollector {
pub inner: Arc<Mutex<VecDeque<EvalError>>>,
}
impl ErrCollector {
pub fn get_all_blocking(&self) -> Vec<EvalError> {
self.inner.blocking_lock().drain(..).collect_vec()
}
pub async fn get_all(&self) -> Vec<EvalError> {
self.inner.lock().await.drain(..).collect_vec()
}
pub fn is_empty(&self) -> bool {
self.inner.blocking_lock().is_empty()
}
pub fn push_err(&self, err: EvalError) {
METRIC_FLOW_ERRORS
.with_label_values(&[err.status_code().as_ref()])
.inc();
self.inner.blocking_lock().push_back(err)
}
pub fn run<F, R>(&self, f: F) -> Option<R>
where
F: FnOnce() -> Result<R, EvalError>,
{
match f() {
Ok(r) => Some(r),
Err(e) => {
self.push_err(e);
None
}
}
}
}