flow/compute/render/src_sink.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Source and Sink for the dataflow
use std::collections::BTreeMap;
use common_telemetry::{debug, trace};
use hydroflow::scheduled::graph_ext::GraphExt;
use itertools::Itertools;
use snafu::OptionExt;
use tokio::sync::broadcast::error::TryRecvError;
use tokio::sync::{broadcast, mpsc};
use crate::compute::render::Context;
use crate::compute::types::{Arranged, Collection, CollectionBundle, Toff};
use crate::error::{Error, PlanSnafu};
use crate::expr::error::InternalSnafu;
use crate::expr::{Batch, EvalError};
use crate::repr::{DiffRow, Row};
#[allow(clippy::mutable_key_type)]
impl Context<'_, '_> {
/// simply send the batch to downstream, without fancy features like buffering
pub fn render_source_batch(
&mut self,
mut src_recv: broadcast::Receiver<Batch>,
) -> Result<CollectionBundle<Batch>, Error> {
debug!("Rendering Source Batch");
let (send_port, recv_port) = self.df.make_edge::<_, Toff<Batch>>("source_batch");
let schd = self.compute_state.get_scheduler();
let inner_schd = schd.clone();
let now = self.compute_state.current_time_ref();
let err_collector = self.err_collector.clone();
let sub = self
.df
.add_subgraph_source("source_batch", send_port, move |_ctx, send| {
let mut total_batches = vec![];
let mut total_row_count = 0;
loop {
match src_recv.try_recv() {
Ok(batch) => {
total_row_count += batch.row_count();
total_batches.push(batch);
}
Err(TryRecvError::Empty) => {
break;
}
Err(TryRecvError::Lagged(lag_offset)) => {
// use `err_collector` instead of `error!` to locate which operator caused the error
err_collector.run(|| -> Result<(), EvalError> {
InternalSnafu {
reason: format!("Flow missing {} rows behind", lag_offset),
}
.fail()
});
break;
}
Err(TryRecvError::Closed) => {
err_collector.run(|| -> Result<(), EvalError> {
InternalSnafu {
reason: "Source Batch Channel is closed".to_string(),
}
.fail()
});
break;
}
}
}
trace!(
"Send {} rows in {} batches",
total_row_count,
total_batches.len()
);
send.give(total_batches);
let now = *now.borrow();
// always schedule source to run at now so we can
// repeatedly run source if needed
inner_schd.schedule_at(now);
});
schd.set_cur_subgraph(sub);
let bundle = CollectionBundle::from_collection(Collection::<Batch>::from_port(recv_port));
Ok(bundle)
}
/// Render a source which comes from brocast channel into the dataflow
/// will immediately send updates not greater than `now` and buffer the rest in arrangement
pub fn render_source(
&mut self,
mut src_recv: broadcast::Receiver<DiffRow>,
) -> Result<CollectionBundle, Error> {
debug!("Rendering Source");
let (send_port, recv_port) = self.df.make_edge::<_, Toff>("source");
let arrange_handler = self.compute_state.new_arrange(None);
let arrange_handler_inner =
arrange_handler
.clone_future_only()
.with_context(|| PlanSnafu {
reason: "No write is expected at this point",
})?;
let schd = self.compute_state.get_scheduler();
let inner_schd = schd.clone();
let now = self.compute_state.current_time_ref();
let err_collector = self.err_collector.clone();
let sub = self
.df
.add_subgraph_source("source", send_port, move |_ctx, send| {
let now = *now.borrow();
// write lock to prevent unexpected mutation
let mut arranged = arrange_handler_inner.write();
let arr = arranged.get_updates_in_range(..=now);
err_collector.run(|| arranged.compact_to(now));
let prev_avail = arr.into_iter().map(|((k, _), t, d)| (k, t, d));
let mut to_send = Vec::new();
let mut to_arrange = Vec::new();
// TODO(discord9): handling tokio broadcast error
loop {
match src_recv.try_recv() {
Ok((r, t, d)) => {
if t <= now {
to_send.push((r, t, d));
} else {
to_arrange.push(((r, Row::empty()), t, d));
}
}
Err(TryRecvError::Empty) => {
break;
}
Err(TryRecvError::Lagged(lag_offset)) => {
common_telemetry::error!("Flow missing {} rows behind", lag_offset);
break;
}
Err(err) => {
err_collector.run(|| -> Result<(), EvalError> {
InternalSnafu {
reason: format!(
"Error receiving from broadcast channel: {}",
err
),
}
.fail()
});
}
}
}
let all = prev_avail.chain(to_send).collect_vec();
if !to_arrange.is_empty() {
debug!("Source Operator buffered {} rows", to_arrange.len());
}
err_collector.run(|| arranged.apply_updates(now, to_arrange));
send.give(all);
// always schedule source to run at now so we can repeatedly run source if needed
inner_schd.schedule_at(now);
});
schd.set_cur_subgraph(sub);
let arranged = Arranged::new(arrange_handler);
arranged.writer.borrow_mut().replace(sub);
let arranged = BTreeMap::from([(vec![], arranged)]);
Ok(CollectionBundle {
collection: Collection::from_port(recv_port),
arranged,
})
}
pub fn render_unbounded_sink_batch(
&mut self,
bundle: CollectionBundle<Batch>,
sender: mpsc::UnboundedSender<Batch>,
) {
let CollectionBundle {
collection,
arranged: _,
} = bundle;
let _sink = self.df.add_subgraph_sink(
"UnboundedSinkBatch",
collection.into_inner(),
move |_ctx, recv| {
let data = recv.take_inner();
let mut row_count = 0;
let mut batch_count = 0;
for batch in data.into_iter().flat_map(|i| i.into_iter()) {
row_count += batch.row_count();
batch_count += 1;
// if the sender is closed unexpectedly, stop sending
if sender.is_closed() || sender.send(batch).is_err() {
common_telemetry::error!("UnboundedSinkBatch is closed");
break;
}
}
trace!("sink send {} rows in {} batches", row_count, batch_count);
},
);
}
pub fn render_unbounded_sink(
&mut self,
bundle: CollectionBundle,
sender: mpsc::UnboundedSender<DiffRow>,
) {
let CollectionBundle {
collection,
arranged: _,
} = bundle;
let _sink = self.df.add_subgraph_sink(
"UnboundedSink",
collection.into_inner(),
move |_ctx, recv| {
let data = recv.take_inner();
debug!(
"render_unbounded_sink: send {} rows",
data.iter().map(|i| i.len()).sum::<usize>()
);
for row in data.into_iter().flat_map(|i| i.into_iter()) {
// if the sender is closed, stop sending
if sender.is_closed() {
common_telemetry::error!("UnboundedSink is closed");
break;
}
// TODO(discord9): handling tokio error
let _ = sender.send(row);
}
},
);
}
}