flow/compute/render/
map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::BTreeMap;

use hydroflow::scheduled::graph_ext::GraphExt;
use hydroflow::scheduled::port::{PortCtx, SEND};
use itertools::Itertools;
use snafu::OptionExt;

use crate::compute::render::Context;
use crate::compute::state::Scheduler;
use crate::compute::types::{Arranged, Collection, CollectionBundle, ErrCollector, Toff};
use crate::error::{Error, PlanSnafu};
use crate::expr::{Batch, EvalError, MapFilterProject, MfpPlan, ScalarExpr};
use crate::plan::TypedPlan;
use crate::repr::{self, DiffRow, KeyValDiffRow, RelationType, Row};
use crate::utils::ArrangeHandler;

impl Context<'_, '_> {
    /// Like `render_mfp` but in batch mode
    pub fn render_mfp_batch(
        &mut self,
        input: Box<TypedPlan>,
        mfp: MapFilterProject,
        _output_type: &RelationType,
    ) -> Result<CollectionBundle<Batch>, Error> {
        let input = self.render_plan_batch(*input)?;

        let (out_send_port, out_recv_port) = self.df.make_edge::<_, Toff<Batch>>("mfp_batch");

        // This closure capture following variables:
        let mfp_plan = MfpPlan::create_from(mfp)?;

        let err_collector = self.err_collector.clone();

        // TODO(discord9): better way to schedule future run
        let scheduler = self.compute_state.get_scheduler();

        let subgraph = self.df.add_subgraph_in_out(
            "mfp_batch",
            input.collection.into_inner(),
            out_send_port,
            move |_ctx, recv, send| {
                // mfp only need to passively receive updates from recvs
                let src_data = recv.take_inner().into_iter().flat_map(|v| v.into_iter());

                let output_batches = src_data
                    .filter_map(|mut input_batch| {
                        err_collector.run(|| {
                            let res_batch = mfp_plan.mfp.eval_batch_into(&mut input_batch)?;
                            Ok(res_batch)
                        })
                    })
                    .collect_vec();

                send.give(output_batches);
            },
        );

        // register current subgraph in scheduler for future scheduling
        scheduler.set_cur_subgraph(subgraph);

        let bundle =
            CollectionBundle::from_collection(Collection::<Batch>::from_port(out_recv_port));
        Ok(bundle)
    }

    /// render MapFilterProject, will only emit the `rows` once. Assume all incoming row's sys time being `now`` and ignore the row's stated sys time
    /// TODO(discord9): schedule mfp operator to run when temporal filter need
    ///
    /// `MapFilterProject`(`mfp` for short) is scheduled to run when there is enough amount of input updates
    /// ***or*** when a future update in it's output buffer(a `Arrangement`) is supposed to emit now.
    // There is a false positive in using `Vec<ScalarExpr>` as key due to `Value` have `bytes` variant
    #[allow(clippy::mutable_key_type)]
    pub fn render_mfp(
        &mut self,
        input: Box<TypedPlan>,
        mfp: MapFilterProject,
    ) -> Result<CollectionBundle, Error> {
        let input = self.render_plan(*input)?;
        // TODO(discord9): consider if check if contain temporal to determine if
        // need arrange or not, or does this added complexity worth it
        let (out_send_port, out_recv_port) = self.df.make_edge::<_, Toff>("mfp");

        let output_arity = mfp.output_arity();

        // default to have a arrange with only future updates, so it can be empty if no temporal filter is applied
        // as stream only sends current updates and etc.
        let arrange_handler = self.compute_state.new_arrange(None);
        let arrange_handler_inner =
            arrange_handler
                .clone_future_only()
                .with_context(|| PlanSnafu {
                    reason: "No write is expected at this point",
                })?;

        // This closure capture following variables:
        let mfp_plan = MfpPlan::create_from(mfp)?;
        let now = self.compute_state.current_time_ref();

        let err_collector = self.err_collector.clone();

        // TODO(discord9): better way to schedule future run
        let scheduler = self.compute_state.get_scheduler();
        let scheduler_inner = scheduler.clone();

        let subgraph = self.df.add_subgraph_in_out(
            "mfp",
            input.collection.into_inner(),
            out_send_port,
            move |_ctx, recv, send| {
                // mfp only need to passively receive updates from recvs
                let data = recv.take_inner().into_iter().flat_map(|v| v.into_iter());

                mfp_subgraph(
                    &arrange_handler_inner,
                    data,
                    &mfp_plan,
                    *now.borrow(),
                    &err_collector,
                    &scheduler_inner,
                    send,
                );
            },
        );

        // register current subgraph in scheduler for future scheduling
        scheduler.set_cur_subgraph(subgraph);

        let arranged = BTreeMap::from([(
            (0..output_arity).map(ScalarExpr::Column).collect_vec(),
            Arranged::new(arrange_handler),
        )]);

        let bundle = CollectionBundle {
            collection: Collection::from_port(out_recv_port),
            arranged,
        };
        Ok(bundle)
    }
}

fn mfp_subgraph(
    arrange: &ArrangeHandler,
    input: impl IntoIterator<Item = DiffRow>,
    mfp_plan: &MfpPlan,
    now: repr::Timestamp,
    err_collector: &ErrCollector,
    scheduler: &Scheduler,
    send: &PortCtx<SEND, Toff>,
) {
    // all updates that should be send immediately
    let mut output_now = vec![];
    let run_mfp = || {
        let mut all_updates = eval_mfp_core(input, mfp_plan, now, err_collector);
        all_updates.retain(|(kv, ts, d)| {
            if *ts > now {
                true
            } else {
                output_now.push((kv.clone(), *ts, *d));
                false
            }
        });
        let future_updates = all_updates;

        arrange.write().apply_updates(now, future_updates)?;
        Ok(())
    };
    err_collector.run(run_mfp);

    // Deal with output:
    // 1. Read all updates that were emitted between the last time this arrangement had updates and the current time.
    // 2. Output the updates.
    // 3. Truncate all updates within that range.
    let from = arrange.read().last_compaction_time();
    let from = from.unwrap_or(repr::Timestamp::MIN);
    let range = (
        std::ops::Bound::Excluded(from),
        std::ops::Bound::Included(now),
    );

    // find all updates that need to be send from arrangement
    let output_kv = arrange.read().get_updates_in_range(range);

    err_collector.run(|| {
        snafu::ensure!(
            mfp_plan.is_temporal() || output_kv.is_empty(),
            crate::expr::error::InternalSnafu {
                reason: "Output from future should be empty since temporal filter is not applied"
            }
        );
        Ok(())
    });

    // the output is expected to be key -> empty val
    let output = output_kv
        .into_iter()
        .chain(output_now) // chain previous immediately send updates
        .map(|((key, _v), ts, diff)| (key, ts, diff))
        .collect_vec();
    // send output
    send.give(output);

    let run_compaction = || {
        arrange.write().compact_to(now)?;
        Ok(())
    };
    err_collector.run(run_compaction);

    // schedule next time this subgraph should run
    scheduler.schedule_for_arrange(&arrange.read(), now);
}

/// The core of evaluating MFP operator, given a MFP and a input, evaluate the MFP operator,
/// return the output updates **And** possibly any number of errors that occurred during the evaluation
fn eval_mfp_core(
    input: impl IntoIterator<Item = DiffRow>,
    mfp_plan: &MfpPlan,
    now: repr::Timestamp,
    err_collector: &ErrCollector,
) -> Vec<KeyValDiffRow> {
    let mut all_updates = Vec::new();
    for (mut row, _sys_time, diff) in input.into_iter() {
        // this updates is expected to be only zero, one or two rows
        let updates = mfp_plan.evaluate::<EvalError>(&mut row.inner, now, diff);
        // TODO(discord9): refactor error handling
        // Expect error in a single row to not interrupt the whole evaluation
        let updates = updates
            .filter_map(|r| match r {
                Ok((key, ts, diff)) => Some(((key, Row::empty()), ts, diff)),
                Err((err, _ts, _diff)) => {
                    err_collector.push_err(err);
                    None
                }
            })
            .collect_vec();

        all_updates.extend(updates);
    }
    all_updates
}

#[cfg(test)]
mod test {

    use datatypes::data_type::ConcreteDataType;
    use hydroflow::scheduled::graph::Hydroflow;

    use super::*;
    use crate::compute::render::test::{get_output_handle, harness_test_ctx, run_and_check};
    use crate::compute::state::DataflowState;
    use crate::expr::{self, BinaryFunc, GlobalId};
    use crate::plan::Plan;
    use crate::repr::{ColumnType, RelationType};

    /// test if temporal filter works properly
    /// namely: if mfp operator can schedule a delete at the correct time
    #[test]
    fn test_render_mfp_with_temporal() {
        let mut df = Hydroflow::new();
        let mut state = DataflowState::default();
        let mut ctx = harness_test_ctx(&mut df, &mut state);

        let rows = vec![
            (Row::new(vec![1i64.into()]), 0, 1),
            (Row::new(vec![2i64.into()]), 0, 1),
            (Row::new(vec![3i64.into()]), 0, 1),
        ];
        let collection = ctx.render_constant(rows.clone());
        ctx.insert_global(GlobalId::User(1), collection);
        let input_plan = Plan::Get {
            id: expr::Id::Global(GlobalId::User(1)),
        };
        let typ = RelationType::new(vec![ColumnType::new_nullable(
            ConcreteDataType::int64_datatype(),
        )]);
        // temporal filter: now <= col(0) < now + 4
        let mfp = MapFilterProject::new(1)
            .filter(vec![
                ScalarExpr::Column(0)
                    .call_unary(expr::UnaryFunc::Cast(
                        ConcreteDataType::timestamp_microsecond_datatype(),
                    ))
                    .call_binary(
                        ScalarExpr::CallUnmaterializable(expr::UnmaterializableFunc::Now),
                        BinaryFunc::Gte,
                    ),
                ScalarExpr::Column(0)
                    .call_binary(
                        ScalarExpr::literal(4i64.into(), ConcreteDataType::int64_datatype()),
                        BinaryFunc::SubInt64,
                    )
                    .call_unary(expr::UnaryFunc::Cast(
                        ConcreteDataType::timestamp_microsecond_datatype(),
                    ))
                    .call_binary(
                        ScalarExpr::CallUnmaterializable(expr::UnmaterializableFunc::Now),
                        BinaryFunc::Lt,
                    ),
            ])
            .unwrap();

        let bundle = ctx
            .render_mfp(Box::new(input_plan.with_types(typ.into_unnamed())), mfp)
            .unwrap();
        let output = get_output_handle(&mut ctx, bundle);
        // drop ctx here to simulate actual process of compile first, run later scenario
        drop(ctx);
        // expected output at given time
        let expected_output = BTreeMap::from([
            (
                0, // time
                vec![
                    (Row::new(vec![1i64.into()]), 0, 1),
                    (Row::new(vec![2i64.into()]), 0, 1),
                    (Row::new(vec![3i64.into()]), 0, 1),
                ],
            ),
            (
                2, // time
                vec![(Row::new(vec![1i64.into()]), 2, -1)],
            ),
            (
                3, // time
                vec![(Row::new(vec![2i64.into()]), 3, -1)],
            ),
            (
                4, // time
                vec![(Row::new(vec![3i64.into()]), 4, -1)],
            ),
        ]);
        run_and_check(&mut state, &mut df, 0..5, expected_output, output);
    }

    /// test if mfp operator without temporal filter works properly
    /// that is it filter the rows correctly
    #[test]
    fn test_render_mfp() {
        let mut df = Hydroflow::new();
        let mut state = DataflowState::default();
        let mut ctx = harness_test_ctx(&mut df, &mut state);

        let rows = vec![
            (Row::new(vec![1.into()]), 1, 1),
            (Row::new(vec![2.into()]), 2, 1),
            (Row::new(vec![3.into()]), 3, 1),
        ];
        let collection = ctx.render_constant(rows.clone());
        ctx.insert_global(GlobalId::User(1), collection);
        let input_plan = Plan::Get {
            id: expr::Id::Global(GlobalId::User(1)),
        };
        let typ = RelationType::new(vec![ColumnType::new_nullable(
            ConcreteDataType::int64_datatype(),
        )]);
        // filter: col(0)>1
        let mfp = MapFilterProject::new(1)
            .filter(vec![ScalarExpr::Column(0).call_binary(
                ScalarExpr::literal(1.into(), ConcreteDataType::int32_datatype()),
                BinaryFunc::Gt,
            )])
            .unwrap();
        let bundle = ctx
            .render_mfp(Box::new(input_plan.with_types(typ.into_unnamed())), mfp)
            .unwrap();

        let output = get_output_handle(&mut ctx, bundle);
        drop(ctx);
        let expected = BTreeMap::from([
            (2, vec![(Row::new(vec![2.into()]), 2, 1)]),
            (3, vec![(Row::new(vec![3.into()]), 3, 1)]),
        ]);
        run_and_check(&mut state, &mut df, 1..5, expected, output);
    }

    /// test if mfp operator can run multiple times within same tick
    #[test]
    fn test_render_mfp_multiple_times() {
        let mut df = Hydroflow::new();
        let mut state = DataflowState::default();
        let mut ctx = harness_test_ctx(&mut df, &mut state);

        let (sender, recv) = tokio::sync::broadcast::channel(1000);
        let collection = ctx.render_source(recv).unwrap();
        ctx.insert_global(GlobalId::User(1), collection);
        let input_plan = Plan::Get {
            id: expr::Id::Global(GlobalId::User(1)),
        };
        let typ = RelationType::new(vec![ColumnType::new_nullable(
            ConcreteDataType::int64_datatype(),
        )]);
        // filter: col(0)>1
        let mfp = MapFilterProject::new(1)
            .filter(vec![ScalarExpr::Column(0).call_binary(
                ScalarExpr::literal(1.into(), ConcreteDataType::int32_datatype()),
                BinaryFunc::Gt,
            )])
            .unwrap();
        let bundle = ctx
            .render_mfp(Box::new(input_plan.with_types(typ.into_unnamed())), mfp)
            .unwrap();

        let output = get_output_handle(&mut ctx, bundle);
        drop(ctx);
        sender.send((Row::new(vec![2.into()]), 0, 1)).unwrap();
        state.run_available_with_schedule(&mut df);
        assert_eq!(output.borrow().len(), 1);
        output.borrow_mut().clear();
        sender.send((Row::new(vec![3.into()]), 0, 1)).unwrap();
        state.run_available_with_schedule(&mut df);
        assert_eq!(output.borrow().len(), 1);
    }
}