flow/compute/
render.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! In this file, `render` means convert a static `Plan` into a Executable Dataflow
//!
//! And the [`Context`] is the environment for the render process, it contains all the necessary information for the render process

use std::collections::BTreeMap;

use hydroflow::scheduled::graph::Hydroflow;
use hydroflow::scheduled::graph_ext::GraphExt;
use hydroflow::scheduled::port::{PortCtx, SEND};
use itertools::Itertools;
use snafu::OptionExt;

use super::state::Scheduler;
use crate::compute::state::DataflowState;
use crate::compute::types::{Collection, CollectionBundle, ErrCollector, Toff};
use crate::error::{Error, InvalidQuerySnafu, NotImplementedSnafu};
use crate::expr::{self, Batch, GlobalId, LocalId};
use crate::plan::{Plan, TypedPlan};
use crate::repr::{self, DiffRow, RelationType};

mod map;
mod reduce;
mod src_sink;

/// The Context for build a Operator with id of `GlobalId`
pub struct Context<'referred, 'df> {
    pub id: GlobalId,
    pub df: &'referred mut Hydroflow<'df>,
    pub compute_state: &'referred mut DataflowState,
    /// a list of all collections being used in the operator
    ///
    /// TODO(discord9): remove extra clone by counting usage and remove it on last usage?
    pub input_collection: BTreeMap<GlobalId, CollectionBundle>,
    /// used by `Get`/`Let` Plan for getting/setting local variables
    ///
    /// TODO(discord9): consider if use Vec<(LocalId, CollectionBundle)> instead
    pub local_scope: Vec<BTreeMap<LocalId, CollectionBundle>>,
    /// a list of all collections being used in the operator
    ///
    /// TODO(discord9): remove extra clone by counting usage and remove it on last usage?
    pub input_collection_batch: BTreeMap<GlobalId, CollectionBundle<Batch>>,
    /// used by `Get`/`Let` Plan for getting/setting local variables
    ///
    /// TODO(discord9): consider if use Vec<(LocalId, CollectionBundle)> instead
    pub local_scope_batch: Vec<BTreeMap<LocalId, CollectionBundle<Batch>>>,
    // Collect all errors in this operator's evaluation
    pub err_collector: ErrCollector,
}

impl Drop for Context<'_, '_> {
    fn drop(&mut self) {
        for bundle in std::mem::take(&mut self.input_collection)
            .into_values()
            .chain(
                std::mem::take(&mut self.local_scope)
                    .into_iter()
                    .flat_map(|v| v.into_iter())
                    .map(|(_k, v)| v),
            )
        {
            bundle.collection.into_inner().drop(self.df);
            drop(bundle.arranged);
        }

        for bundle in std::mem::take(&mut self.input_collection_batch)
            .into_values()
            .chain(
                std::mem::take(&mut self.local_scope_batch)
                    .into_iter()
                    .flat_map(|v| v.into_iter())
                    .map(|(_k, v)| v),
            )
        {
            bundle.collection.into_inner().drop(self.df);
            drop(bundle.arranged);
        }
        // The automatically generated "drop glue" which recursively calls the destructors of all the fields (including the now empty `input_collection`)
    }
}

impl Context<'_, '_> {
    pub fn insert_global(&mut self, id: GlobalId, collection: CollectionBundle) {
        self.input_collection.insert(id, collection);
    }

    pub fn insert_local(&mut self, id: LocalId, collection: CollectionBundle) {
        if let Some(last) = self.local_scope.last_mut() {
            last.insert(id, collection);
        } else {
            let first = BTreeMap::from([(id, collection)]);
            self.local_scope.push(first);
        }
    }

    pub fn insert_global_batch(&mut self, id: GlobalId, collection: CollectionBundle<Batch>) {
        self.input_collection_batch.insert(id, collection);
    }

    pub fn insert_local_batch(&mut self, id: LocalId, collection: CollectionBundle<Batch>) {
        if let Some(last) = self.local_scope_batch.last_mut() {
            last.insert(id, collection);
        } else {
            let first = BTreeMap::from([(id, collection)]);
            self.local_scope_batch.push(first);
        }
    }
}

impl Context<'_, '_> {
    /// Like `render_plan` but in Batch Mode
    pub fn render_plan_batch(&mut self, plan: TypedPlan) -> Result<CollectionBundle<Batch>, Error> {
        match plan.plan {
            Plan::Constant { rows } => Ok(self.render_constant_batch(rows, &plan.schema.typ)),
            Plan::Get { id } => self.get_batch_by_id(id),
            Plan::Let { id, value, body } => self.eval_batch_let(id, value, body),
            Plan::Mfp { input, mfp } => self.render_mfp_batch(input, mfp, &plan.schema.typ),
            Plan::Reduce {
                input,
                key_val_plan,
                reduce_plan,
            } => self.render_reduce_batch(input, &key_val_plan, &reduce_plan, &plan.schema.typ),
            Plan::Join { .. } => NotImplementedSnafu {
                reason: "Join is still WIP",
            }
            .fail(),
            Plan::Union { .. } => NotImplementedSnafu {
                reason: "Union is still WIP",
            }
            .fail(),
        }
    }

    /// Interpret plan to dataflow and prepare them for execution
    ///
    /// return the output handler of this plan
    pub fn render_plan(&mut self, plan: TypedPlan) -> Result<CollectionBundle, Error> {
        match plan.plan {
            Plan::Constant { rows } => Ok(self.render_constant(rows)),
            Plan::Get { id } => self.get_by_id(id),
            Plan::Let { id, value, body } => self.eval_let(id, value, body),
            Plan::Mfp { input, mfp } => self.render_mfp(input, mfp),
            Plan::Reduce {
                input,
                key_val_plan,
                reduce_plan,
            } => self.render_reduce(input, key_val_plan, reduce_plan, plan.schema.typ),
            Plan::Join { .. } => NotImplementedSnafu {
                reason: "Join is still WIP",
            }
            .fail(),
            Plan::Union { .. } => NotImplementedSnafu {
                reason: "Union is still WIP",
            }
            .fail(),
        }
    }

    /// render Constant, take all rows that have a timestamp not greater than the current time
    /// This function is primarily used for testing
    /// Always assume input is sorted by timestamp
    pub fn render_constant_batch(
        &mut self,
        rows: Vec<DiffRow>,
        output_type: &RelationType,
    ) -> CollectionBundle<Batch> {
        let (send_port, recv_port) = self.df.make_edge::<_, Toff<Batch>>("constant_batch");
        let mut per_time: BTreeMap<repr::Timestamp, Vec<DiffRow>> = Default::default();
        for (key, group) in &rows.into_iter().chunk_by(|(_row, ts, _diff)| *ts) {
            per_time.entry(key).or_default().extend(group);
        }

        let now = self.compute_state.current_time_ref();
        // TODO(discord9): better way to schedule future run
        let scheduler = self.compute_state.get_scheduler();
        let scheduler_inner = scheduler.clone();
        let err_collector = self.err_collector.clone();

        let output_type = output_type.clone();

        let subgraph_id =
            self.df
                .add_subgraph_source("ConstantBatch", send_port, move |_ctx, send_port| {
                    // find the first timestamp that is greater than now
                    // use filter_map

                    let mut after = per_time.split_off(&(*now.borrow() + 1));
                    // swap
                    std::mem::swap(&mut per_time, &mut after);
                    let not_great_than_now = after;

                    not_great_than_now.into_iter().for_each(|(_ts, rows)| {
                        err_collector.run(|| {
                            let rows = rows.into_iter().map(|(row, _ts, _diff)| row).collect();
                            let batch = Batch::try_from_rows_with_types(
                                rows,
                                &output_type
                                    .column_types
                                    .iter()
                                    .map(|ty| ty.scalar_type().clone())
                                    .collect_vec(),
                            )?;
                            send_port.give(vec![batch]);
                            Ok(())
                        });
                    });
                    // schedule the next run
                    if let Some(next_run_time) = per_time.keys().next().copied() {
                        scheduler_inner.schedule_at(next_run_time);
                    }
                });
        scheduler.set_cur_subgraph(subgraph_id);

        CollectionBundle::from_collection(Collection::from_port(recv_port))
    }

    /// render Constant, take all rows that have a timestamp not greater than the current time
    ///
    /// Always assume input is sorted by timestamp
    pub fn render_constant(&mut self, rows: Vec<DiffRow>) -> CollectionBundle {
        let (send_port, recv_port) = self.df.make_edge::<_, Toff>("constant");
        let mut per_time: BTreeMap<repr::Timestamp, Vec<DiffRow>> = Default::default();
        for (key, group) in &rows.into_iter().chunk_by(|(_row, ts, _diff)| *ts) {
            per_time.entry(key).or_default().extend(group);
        }

        let now = self.compute_state.current_time_ref();
        // TODO(discord9): better way to schedule future run
        let scheduler = self.compute_state.get_scheduler();
        let scheduler_inner = scheduler.clone();

        let subgraph_id =
            self.df
                .add_subgraph_source("Constant", send_port, move |_ctx, send_port| {
                    // find the first timestamp that is greater than now
                    // use filter_map

                    let mut after = per_time.split_off(&(*now.borrow() + 1));
                    // swap
                    std::mem::swap(&mut per_time, &mut after);
                    let not_great_than_now = after;

                    not_great_than_now.into_iter().for_each(|(_ts, rows)| {
                        send_port.give(rows);
                    });
                    // schedule the next run
                    if let Some(next_run_time) = per_time.keys().next().copied() {
                        scheduler_inner.schedule_at(next_run_time);
                    }
                });
        scheduler.set_cur_subgraph(subgraph_id);

        CollectionBundle::from_collection(Collection::from_port(recv_port))
    }

    pub fn get_batch_by_id(&mut self, id: expr::Id) -> Result<CollectionBundle<Batch>, Error> {
        let ret = match id {
            expr::Id::Local(local) => {
                let bundle = self
                    .local_scope_batch
                    .iter()
                    .rev()
                    .find_map(|scope| scope.get(&local))
                    .with_context(|| InvalidQuerySnafu {
                        reason: format!("Local variable {:?} not found", local),
                    })?;
                bundle.clone(self.df)
            }
            expr::Id::Global(id) => {
                let bundle =
                    self.input_collection_batch
                        .get(&id)
                        .with_context(|| InvalidQuerySnafu {
                            reason: format!("Collection {:?} not found", id),
                        })?;
                bundle.clone(self.df)
            }
        };
        Ok(ret)
    }

    pub fn get_by_id(&mut self, id: expr::Id) -> Result<CollectionBundle, Error> {
        let ret = match id {
            expr::Id::Local(local) => {
                let bundle = self
                    .local_scope
                    .iter()
                    .rev()
                    .find_map(|scope| scope.get(&local))
                    .with_context(|| InvalidQuerySnafu {
                        reason: format!("Local variable {:?} not found", local),
                    })?;
                bundle.clone(self.df)
            }
            expr::Id::Global(id) => {
                let bundle = self
                    .input_collection
                    .get(&id)
                    .with_context(|| InvalidQuerySnafu {
                        reason: format!("Collection {:?} not found", id),
                    })?;
                bundle.clone(self.df)
            }
        };
        Ok(ret)
    }

    /// Eval `Let` operator, useful for assigning a value to a local variable
    pub fn eval_batch_let(
        &mut self,
        id: LocalId,
        value: Box<TypedPlan>,
        body: Box<TypedPlan>,
    ) -> Result<CollectionBundle<Batch>, Error> {
        let value = self.render_plan_batch(*value)?;

        self.local_scope_batch.push(Default::default());
        self.insert_local_batch(id, value);
        let ret = self.render_plan_batch(*body)?;
        Ok(ret)
    }

    /// Eval `Let` operator, useful for assigning a value to a local variable
    pub fn eval_let(
        &mut self,
        id: LocalId,
        value: Box<TypedPlan>,
        body: Box<TypedPlan>,
    ) -> Result<CollectionBundle, Error> {
        let value = self.render_plan(*value)?;

        self.local_scope.push(Default::default());
        self.insert_local(id, value);
        let ret = self.render_plan(*body)?;
        Ok(ret)
    }
}

/// The Common argument for all `Subgraph` in the render process
struct SubgraphArg<'a, T = Toff> {
    now: repr::Timestamp,
    err_collector: &'a ErrCollector,
    scheduler: &'a Scheduler,
    send: &'a PortCtx<SEND, T>,
}

#[cfg(test)]
mod test {
    use std::cell::RefCell;
    use std::rc::Rc;

    use hydroflow::scheduled::graph::Hydroflow;
    use hydroflow::scheduled::graph_ext::GraphExt;
    use hydroflow::scheduled::handoff::VecHandoff;
    use pretty_assertions::assert_eq;

    use super::*;
    use crate::repr::Row;
    pub fn run_and_check(
        state: &mut DataflowState,
        df: &mut Hydroflow,
        time_range: std::ops::Range<i64>,
        expected: BTreeMap<i64, Vec<DiffRow>>,
        output: Rc<RefCell<Vec<DiffRow>>>,
    ) {
        for now in time_range {
            state.set_current_ts(now);
            state.run_available_with_schedule(df);
            if !state.get_err_collector().is_empty() {
                panic!(
                    "Errors occur: {:?}",
                    state.get_err_collector().get_all_blocking()
                )
            }
            assert!(state.get_err_collector().is_empty());
            if let Some(expected) = expected.get(&now) {
                assert_eq!(*output.borrow(), *expected, "at ts={}", now);
            } else {
                assert_eq!(*output.borrow(), vec![], "at ts={}", now);
            };
            output.borrow_mut().clear();
        }
    }

    pub fn get_output_handle(
        ctx: &mut Context,
        mut bundle: CollectionBundle,
    ) -> Rc<RefCell<Vec<DiffRow>>> {
        let collection = bundle.collection;
        let _arranged = bundle.arranged.pop_first().unwrap().1;
        let output = Rc::new(RefCell::new(vec![]));
        let output_inner = output.clone();
        let _subgraph = ctx.df.add_subgraph_sink(
            "test_render_constant",
            collection.into_inner(),
            move |_ctx, recv| {
                let data = recv.take_inner();
                let res = data.into_iter().flat_map(|v| v.into_iter()).collect_vec();
                output_inner.borrow_mut().clear();
                output_inner.borrow_mut().extend(res);
            },
        );
        output
    }

    pub fn harness_test_ctx<'r, 'h>(
        df: &'r mut Hydroflow<'h>,
        state: &'r mut DataflowState,
    ) -> Context<'r, 'h> {
        let err_collector = state.get_err_collector();
        Context {
            id: GlobalId::User(0),
            df,
            compute_state: state,
            input_collection: BTreeMap::new(),
            local_scope: Default::default(),
            input_collection_batch: BTreeMap::new(),
            local_scope_batch: Default::default(),
            err_collector,
        }
    }

    /// test if constant operator works properly
    /// that is it only emit once, not multiple times
    #[test]
    fn test_render_constant() {
        let mut df = Hydroflow::new();
        let mut state = DataflowState::default();
        let mut ctx = harness_test_ctx(&mut df, &mut state);

        let rows = vec![
            (Row::empty(), 1, 1),
            (Row::empty(), 2, 1),
            (Row::empty(), 3, 1),
        ];
        let collection = ctx.render_constant(rows);
        let collection = collection.collection.clone(ctx.df);
        let cnt = Rc::new(RefCell::new(0));
        let cnt_inner = cnt.clone();
        let res_subgraph_id = ctx.df.add_subgraph_sink(
            "test_render_constant",
            collection.into_inner(),
            move |_ctx, recv| {
                let data = recv.take_inner();
                *cnt_inner.borrow_mut() += data.iter().map(|v| v.len()).sum::<usize>();
            },
        );
        ctx.compute_state.set_current_ts(2);
        ctx.compute_state.run_available_with_schedule(ctx.df);
        assert_eq!(*cnt.borrow(), 2);

        ctx.compute_state.set_current_ts(3);
        ctx.compute_state.run_available_with_schedule(ctx.df);
        // to get output
        ctx.df.schedule_subgraph(res_subgraph_id);
        ctx.df.run_available();

        assert_eq!(*cnt.borrow(), 3);
    }

    /// a simple example to show how to use source and sink
    #[test]
    fn example_source_sink() {
        let mut df = Hydroflow::new();
        let (send_port, recv_port) = df.make_edge::<_, VecHandoff<i32>>("test_handoff");
        df.add_subgraph_source("test_handoff_source", send_port, move |_ctx, send| {
            for i in 0..10 {
                send.give(vec![i]);
            }
        });

        let sum = Rc::new(RefCell::new(0));
        let sum_move = sum.clone();
        let sink = df.add_subgraph_sink("test_handoff_sink", recv_port, move |_ctx, recv| {
            let data = recv.take_inner();
            *sum_move.borrow_mut() += data.iter().sum::<i32>();
        });

        df.run_available();
        assert_eq!(sum.borrow().to_owned(), 45);
        df.schedule_subgraph(sink);
        df.run_available();

        assert_eq!(sum.borrow().to_owned(), 45);
    }

    #[test]
    fn test_tee_auto_schedule() {
        use hydroflow::scheduled::handoff::TeeingHandoff as Toff;
        let mut df = Hydroflow::new();
        let (send_port, recv_port) = df.make_edge::<_, Toff<i32>>("test_handoff");
        let source = df.add_subgraph_source("test_handoff_source", send_port, move |_ctx, send| {
            for i in 0..10 {
                send.give(vec![i]);
            }
        });
        let teed_recv_port = recv_port.tee(&mut df);

        let sum = Rc::new(RefCell::new(0));
        let sum_move = sum.clone();
        let _sink = df.add_subgraph_sink("test_handoff_sink", teed_recv_port, move |_ctx, recv| {
            let data = recv.take_inner();
            *sum_move.borrow_mut() += data.iter().flat_map(|i| i.iter()).sum::<i32>();
        });
        drop(recv_port);

        df.run_available();
        assert_eq!(sum.borrow().to_owned(), 45);

        df.schedule_subgraph(source);
        df.run_available();

        assert_eq!(sum.borrow().to_owned(), 90);
    }
}