datatypes/vectors/
dictionary.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::any::Any;
use std::sync::Arc;

use arrow::array::Array;
use arrow::datatypes::Int32Type;
use arrow_array::{ArrayRef, DictionaryArray, Int32Array};
use serde_json::Value as JsonValue;
use snafu::ResultExt;

use super::operations::VectorOp;
use crate::data_type::ConcreteDataType;
use crate::error::{self, Result};
use crate::serialize::Serializable;
use crate::types::DictionaryType;
use crate::value::{Value, ValueRef};
use crate::vectors::{self, Helper, Validity, Vector, VectorRef};

/// Vector of dictionaries, basically backed by Arrow's `DictionaryArray`.
#[derive(Debug, PartialEq)]
pub struct DictionaryVector {
    array: DictionaryArray<Int32Type>,
    /// The datatype of the items in the dictionary.
    item_type: ConcreteDataType,
    /// The vector of items in the dictionary.
    item_vector: VectorRef,
}

impl DictionaryVector {
    /// Create a new instance of `DictionaryVector` from a dictionary array and item type
    pub fn new(array: DictionaryArray<Int32Type>, item_type: ConcreteDataType) -> Result<Self> {
        let item_vector = Helper::try_into_vector(array.values())?;

        Ok(Self {
            array,
            item_type,
            item_vector,
        })
    }

    /// Returns the underlying Arrow dictionary array
    pub fn array(&self) -> &DictionaryArray<Int32Type> {
        &self.array
    }

    /// Returns the keys array of this dictionary
    pub fn keys(&self) -> &arrow_array::PrimitiveArray<Int32Type> {
        self.array.keys()
    }

    /// Returns the values array of this dictionary
    pub fn values(&self) -> &ArrayRef {
        self.array.values()
    }

    pub fn as_arrow(&self) -> &dyn Array {
        &self.array
    }
}

impl Vector for DictionaryVector {
    fn data_type(&self) -> ConcreteDataType {
        ConcreteDataType::Dictionary(DictionaryType::new(
            ConcreteDataType::int32_datatype(),
            self.item_type.clone(),
        ))
    }

    fn vector_type_name(&self) -> String {
        "DictionaryVector".to_string()
    }

    fn as_any(&self) -> &dyn Any {
        self
    }

    fn len(&self) -> usize {
        self.array.len()
    }

    fn to_arrow_array(&self) -> ArrayRef {
        Arc::new(self.array.clone())
    }

    fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
        Box::new(self.array.clone())
    }

    fn validity(&self) -> Validity {
        vectors::impl_validity_for_vector!(self.array)
    }

    fn memory_size(&self) -> usize {
        self.array.get_buffer_memory_size()
    }

    fn null_count(&self) -> usize {
        self.array.null_count()
    }

    fn is_null(&self, row: usize) -> bool {
        self.array.is_null(row)
    }

    fn slice(&self, offset: usize, length: usize) -> VectorRef {
        Arc::new(Self {
            array: self.array.slice(offset, length),
            item_type: self.item_type.clone(),
            item_vector: self.item_vector.clone(),
        })
    }

    fn get(&self, index: usize) -> Value {
        if !self.array.is_valid(index) {
            return Value::Null;
        }

        let key = self.array.keys().value(index);
        self.item_vector.get(key as usize)
    }

    fn get_ref(&self, index: usize) -> ValueRef {
        if !self.array.is_valid(index) {
            return ValueRef::Null;
        }

        let key = self.array.keys().value(index);
        self.item_vector.get_ref(key as usize)
    }
}

impl Serializable for DictionaryVector {
    fn serialize_to_json(&self) -> Result<Vec<JsonValue>> {
        // Convert the dictionary array to JSON, where each element is either null or
        // the value it refers to in the dictionary
        let mut result = Vec::with_capacity(self.len());

        for i in 0..self.len() {
            if self.is_null(i) {
                result.push(JsonValue::Null);
            } else {
                let key = self.array.keys().value(i);
                let value = self.item_vector.get(key as usize);
                let json_value = serde_json::to_value(value).context(error::SerializeSnafu)?;
                result.push(json_value);
            }
        }

        Ok(result)
    }
}

impl TryFrom<DictionaryArray<Int32Type>> for DictionaryVector {
    type Error = crate::error::Error;

    fn try_from(array: DictionaryArray<Int32Type>) -> Result<Self> {
        let item_type = ConcreteDataType::from_arrow_type(array.values().data_type());
        let item_vector = Helper::try_into_vector(array.values())?;

        Ok(Self {
            array,
            item_type,
            item_vector,
        })
    }
}

pub struct DictionaryIter<'a> {
    vector: &'a DictionaryVector,
    idx: usize,
}

impl<'a> DictionaryIter<'a> {
    pub fn new(vector: &'a DictionaryVector) -> DictionaryIter<'a> {
        DictionaryIter { vector, idx: 0 }
    }
}

impl<'a> Iterator for DictionaryIter<'a> {
    type Item = Option<ValueRef<'a>>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.idx >= self.vector.len() {
            return None;
        }

        let idx = self.idx;
        self.idx += 1;

        if self.vector.is_null(idx) {
            return Some(None);
        }

        Some(Some(self.vector.item_vector.get_ref(self.idx)))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (
            self.vector.len() - self.idx,
            Some(self.vector.len() - self.idx),
        )
    }
}

impl VectorOp for DictionaryVector {
    fn replicate(&self, offsets: &[usize]) -> VectorRef {
        let keys = self.array.keys();
        let mut replicated_keys = Vec::with_capacity(offsets.len());

        let mut previous_offset = 0;
        for (i, &offset) in offsets.iter().enumerate() {
            let key = if i < self.len() {
                if keys.is_valid(i) {
                    Some(keys.value(i))
                } else {
                    None
                }
            } else {
                None
            };

            // repeat this key (offset - previous_offset) times
            let repeat_count = offset - previous_offset;
            if repeat_count > 0 {
                replicated_keys.resize(replicated_keys.len() + repeat_count, key);
            }

            previous_offset = offset;
        }

        let new_keys = Int32Array::from(replicated_keys);
        let new_array = DictionaryArray::try_new(new_keys, self.values().clone())
            .expect("Failed to create replicated dictionary array");

        Arc::new(Self {
            array: new_array,
            item_type: self.item_type.clone(),
            item_vector: self.item_vector.clone(),
        })
    }

    fn filter(&self, filter: &vectors::BooleanVector) -> Result<VectorRef> {
        let key_array: ArrayRef = Arc::new(self.array.keys().clone());
        let key_vector = Helper::try_into_vector(&key_array)?;
        let filtered_key_vector = key_vector.filter(filter)?;
        let filtered_key_array = filtered_key_vector.to_arrow_array();
        let filtered_key_array = filtered_key_array
            .as_any()
            .downcast_ref::<Int32Array>()
            .unwrap();

        let new_array = DictionaryArray::try_new(filtered_key_array.clone(), self.values().clone())
            .expect("Failed to create filtered dictionary array");

        Ok(Arc::new(Self {
            array: new_array,
            item_type: self.item_type.clone(),
            item_vector: self.item_vector.clone(),
        }))
    }

    fn cast(&self, to_type: &ConcreteDataType) -> Result<VectorRef> {
        let new_items = self.item_vector.cast(to_type)?;
        let new_array =
            DictionaryArray::try_new(self.array.keys().clone(), new_items.to_arrow_array())
                .expect("Failed to create casted dictionary array");
        Ok(Arc::new(Self {
            array: new_array,
            item_type: to_type.clone(),
            item_vector: self.item_vector.clone(),
        }))
    }

    fn take(&self, indices: &vectors::UInt32Vector) -> Result<VectorRef> {
        let key_array: ArrayRef = Arc::new(self.array.keys().clone());
        let key_vector = Helper::try_into_vector(&key_array)?;
        let new_key_vector = key_vector.take(indices)?;
        let new_key_array = new_key_vector.to_arrow_array();
        let new_key_array = new_key_array.as_any().downcast_ref::<Int32Array>().unwrap();

        let new_array = DictionaryArray::try_new(new_key_array.clone(), self.values().clone())
            .expect("Failed to create filtered dictionary array");

        Ok(Arc::new(Self {
            array: new_array,
            item_type: self.item_type.clone(),
            item_vector: self.item_vector.clone(),
        }))
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use arrow_array::StringArray;

    use super::*;

    // Helper function to create a test dictionary vector with string values
    fn create_test_dictionary() -> DictionaryVector {
        // Dictionary values: ["a", "b", "c", "d"]
        // Keys: [0, 1, 2, null, 1, 3]
        // Resulting in: ["a", "b", "c", null, "b", "d"]
        let values = StringArray::from(vec!["a", "b", "c", "d"]);
        let keys = Int32Array::from(vec![Some(0), Some(1), Some(2), None, Some(1), Some(3)]);
        let dict_array = DictionaryArray::new(keys, Arc::new(values));
        DictionaryVector::try_from(dict_array).unwrap()
    }

    #[test]
    fn test_dictionary_vector_basics() {
        let dict_vec = create_test_dictionary();

        // Test length and null count
        assert_eq!(dict_vec.len(), 6);
        assert_eq!(dict_vec.null_count(), 1);

        // Test data type
        let data_type = dict_vec.data_type();
        if let ConcreteDataType::Dictionary(dict_type) = data_type {
            assert_eq!(*dict_type.value_type(), ConcreteDataType::string_datatype());
        } else {
            panic!("Expected Dictionary data type");
        }

        // Test is_null
        assert!(!dict_vec.is_null(0));
        assert!(dict_vec.is_null(3));

        // Test get values
        assert_eq!(dict_vec.get(0), Value::String("a".to_string().into()));
        assert_eq!(dict_vec.get(1), Value::String("b".to_string().into()));
        assert_eq!(dict_vec.get(3), Value::Null);
        assert_eq!(dict_vec.get(4), Value::String("b".to_string().into()));
    }

    #[test]
    fn test_slice() {
        let dict_vec = create_test_dictionary();
        let sliced = dict_vec.slice(1, 3);

        assert_eq!(sliced.len(), 3);
        assert_eq!(sliced.get(0), Value::String("b".to_string().into()));
        assert_eq!(sliced.get(1), Value::String("c".to_string().into()));
        assert_eq!(sliced.get(2), Value::Null);
    }

    #[test]
    fn test_replicate() {
        let dict_vec = create_test_dictionary();

        // Replicate with offsets [0, 2, 5] - should get values at these indices
        let offsets = vec![0, 2, 5];
        let replicated = dict_vec.replicate(&offsets);
        assert_eq!(replicated.len(), 5);
        assert_eq!(replicated.get(0), Value::String("b".to_string().into()));
        assert_eq!(replicated.get(1), Value::String("b".to_string().into()));
        assert_eq!(replicated.get(2), Value::String("c".to_string().into()));
        assert_eq!(replicated.get(3), Value::String("c".to_string().into()));
        assert_eq!(replicated.get(4), Value::String("c".to_string().into()));
    }

    #[test]
    fn test_filter() {
        let dict_vec = create_test_dictionary();

        // Keep only indices 0, 2, 4
        let filter_values = vec![true, false, true, false, true, false];
        let filter = vectors::BooleanVector::from(filter_values);

        let filtered = dict_vec.filter(&filter).unwrap();
        assert_eq!(filtered.len(), 3);

        // Check the values
        assert_eq!(filtered.get(0), Value::String("a".to_string().into()));
        assert_eq!(filtered.get(1), Value::String("c".to_string().into()));
        assert_eq!(filtered.get(2), Value::String("b".to_string().into()));
    }

    #[test]
    fn test_cast() {
        let dict_vec = create_test_dictionary();

        // Cast to the same type should return an equivalent vector
        let casted = dict_vec.cast(&ConcreteDataType::string_datatype()).unwrap();

        // The returned vector should have string values
        assert_eq!(
            casted.data_type(),
            ConcreteDataType::Dictionary(DictionaryType::new(
                ConcreteDataType::int32_datatype(),
                ConcreteDataType::string_datatype(),
            ))
        );
        assert_eq!(casted.len(), dict_vec.len());

        // Values should match the original dictionary lookups
        assert_eq!(casted.get(0), Value::String("a".to_string().into()));
        assert_eq!(casted.get(1), Value::String("b".to_string().into()));
        assert_eq!(casted.get(2), Value::String("c".to_string().into()));
        assert_eq!(casted.get(3), Value::Null);
        assert_eq!(casted.get(4), Value::String("b".to_string().into()));
        assert_eq!(casted.get(5), Value::String("d".to_string().into()));
    }

    #[test]
    fn test_take() {
        let dict_vec = create_test_dictionary();

        // Take indices 2, 0, 4
        let indices_vec = vec![Some(2u32), Some(0), Some(4)];
        let indices = vectors::UInt32Vector::from(indices_vec);

        let taken = dict_vec.take(&indices).unwrap();
        assert_eq!(taken.len(), 3);

        // Check the values
        assert_eq!(taken.get(0), Value::String("c".to_string().into()));
        assert_eq!(taken.get(1), Value::String("a".to_string().into()));
        assert_eq!(taken.get(2), Value::String("b".to_string().into()));
    }
}