common_recordbatch/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![feature(never_type)]

pub mod adapter;
pub mod cursor;
pub mod error;
pub mod filter;
mod recordbatch;
pub mod util;

use std::pin::Pin;
use std::sync::Arc;

use adapter::RecordBatchMetrics;
use arc_swap::ArcSwapOption;
pub use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::arrow::compute::SortOptions;
pub use datatypes::arrow::record_batch::RecordBatch as DfRecordBatch;
use datatypes::arrow::util::pretty;
use datatypes::prelude::VectorRef;
use datatypes::schema::{Schema, SchemaRef};
use error::Result;
use futures::task::{Context, Poll};
use futures::{Stream, TryStreamExt};
pub use recordbatch::RecordBatch;
use snafu::{ensure, ResultExt};

pub trait RecordBatchStream: Stream<Item = Result<RecordBatch>> {
    fn name(&self) -> &str {
        "RecordBatchStream"
    }

    fn schema(&self) -> SchemaRef;

    fn output_ordering(&self) -> Option<&[OrderOption]>;

    fn metrics(&self) -> Option<RecordBatchMetrics>;
}

pub type SendableRecordBatchStream = Pin<Box<dyn RecordBatchStream + Send>>;

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct OrderOption {
    pub name: String,
    pub options: SortOptions,
}

/// EmptyRecordBatchStream can be used to create a RecordBatchStream
/// that will produce no results
pub struct EmptyRecordBatchStream {
    /// Schema wrapped by Arc
    schema: SchemaRef,
}

impl EmptyRecordBatchStream {
    /// Create an empty RecordBatchStream
    pub fn new(schema: SchemaRef) -> Self {
        Self { schema }
    }
}

impl RecordBatchStream for EmptyRecordBatchStream {
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    fn output_ordering(&self) -> Option<&[OrderOption]> {
        None
    }

    fn metrics(&self) -> Option<RecordBatchMetrics> {
        None
    }
}

impl Stream for EmptyRecordBatchStream {
    type Item = Result<RecordBatch>;

    fn poll_next(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Poll::Ready(None)
    }
}

#[derive(Debug, PartialEq)]
pub struct RecordBatches {
    schema: SchemaRef,
    batches: Vec<RecordBatch>,
}

impl RecordBatches {
    pub fn try_from_columns<I: IntoIterator<Item = VectorRef>>(
        schema: SchemaRef,
        columns: I,
    ) -> Result<Self> {
        let batches = vec![RecordBatch::new(schema.clone(), columns)?];
        Ok(Self { schema, batches })
    }

    pub async fn try_collect(stream: SendableRecordBatchStream) -> Result<Self> {
        let schema = stream.schema();
        let batches = stream.try_collect::<Vec<_>>().await?;
        Ok(Self { schema, batches })
    }

    #[inline]
    pub fn empty() -> Self {
        Self {
            schema: Arc::new(Schema::new(vec![])),
            batches: vec![],
        }
    }

    pub fn iter(&self) -> impl Iterator<Item = &RecordBatch> {
        self.batches.iter()
    }

    pub fn pretty_print(&self) -> Result<String> {
        let df_batches = &self
            .iter()
            .map(|x| x.df_record_batch().clone())
            .collect::<Vec<_>>();
        let result = pretty::pretty_format_batches(df_batches).context(error::FormatSnafu)?;

        Ok(result.to_string())
    }

    pub fn try_new(schema: SchemaRef, batches: Vec<RecordBatch>) -> Result<Self> {
        for batch in &batches {
            ensure!(
                batch.schema == schema,
                error::CreateRecordBatchesSnafu {
                    reason: format!(
                        "expect RecordBatch schema equals {:?}, actual: {:?}",
                        schema, batch.schema
                    )
                }
            )
        }
        Ok(Self { schema, batches })
    }

    pub fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    pub fn take(self) -> Vec<RecordBatch> {
        self.batches
    }

    pub fn as_stream(&self) -> SendableRecordBatchStream {
        Box::pin(SimpleRecordBatchStream {
            inner: RecordBatches {
                schema: self.schema(),
                batches: self.batches.clone(),
            },
            index: 0,
        })
    }
}

impl IntoIterator for RecordBatches {
    type Item = RecordBatch;
    type IntoIter = std::vec::IntoIter<Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.batches.into_iter()
    }
}

pub struct SimpleRecordBatchStream {
    inner: RecordBatches,
    index: usize,
}

impl RecordBatchStream for SimpleRecordBatchStream {
    fn schema(&self) -> SchemaRef {
        self.inner.schema()
    }

    fn output_ordering(&self) -> Option<&[OrderOption]> {
        None
    }

    fn metrics(&self) -> Option<RecordBatchMetrics> {
        None
    }
}

impl Stream for SimpleRecordBatchStream {
    type Item = Result<RecordBatch>;

    fn poll_next(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Poll::Ready(if self.index < self.inner.batches.len() {
            let batch = self.inner.batches[self.index].clone();
            self.index += 1;
            Some(Ok(batch))
        } else {
            None
        })
    }
}

/// Adapt a [Stream] of [RecordBatch] to a [RecordBatchStream].
pub struct RecordBatchStreamWrapper<S> {
    pub schema: SchemaRef,
    pub stream: S,
    pub output_ordering: Option<Vec<OrderOption>>,
    pub metrics: Arc<ArcSwapOption<RecordBatchMetrics>>,
}

impl<S> RecordBatchStreamWrapper<S> {
    /// Creates a [RecordBatchStreamWrapper] without output ordering requirement.
    pub fn new(schema: SchemaRef, stream: S) -> RecordBatchStreamWrapper<S> {
        RecordBatchStreamWrapper {
            schema,
            stream,
            output_ordering: None,
            metrics: Default::default(),
        }
    }
}

impl<S: Stream<Item = Result<RecordBatch>> + Unpin> RecordBatchStream
    for RecordBatchStreamWrapper<S>
{
    fn name(&self) -> &str {
        "RecordBatchStreamWrapper"
    }

    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    fn output_ordering(&self) -> Option<&[OrderOption]> {
        self.output_ordering.as_deref()
    }

    fn metrics(&self) -> Option<RecordBatchMetrics> {
        self.metrics.load().as_ref().map(|s| s.as_ref().clone())
    }
}

impl<S: Stream<Item = Result<RecordBatch>> + Unpin> Stream for RecordBatchStreamWrapper<S> {
    type Item = Result<RecordBatch>;

    fn poll_next(mut self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Pin::new(&mut self.stream).poll_next(ctx)
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use datatypes::prelude::{ConcreteDataType, VectorRef};
    use datatypes::schema::{ColumnSchema, Schema};
    use datatypes::vectors::{BooleanVector, Int32Vector, StringVector};

    use super::*;

    #[test]
    fn test_recordbatches_try_from_columns() {
        let schema = Arc::new(Schema::new(vec![ColumnSchema::new(
            "a",
            ConcreteDataType::int32_datatype(),
            false,
        )]));
        let result = RecordBatches::try_from_columns(
            schema.clone(),
            vec![Arc::new(StringVector::from(vec!["hello", "world"])) as _],
        );
        assert!(result.is_err());

        let v: VectorRef = Arc::new(Int32Vector::from_slice([1, 2]));
        let expected = vec![RecordBatch::new(schema.clone(), vec![v.clone()]).unwrap()];
        let r = RecordBatches::try_from_columns(schema, vec![v]).unwrap();
        assert_eq!(r.take(), expected);
    }

    #[test]
    fn test_recordbatches_try_new() {
        let column_a = ColumnSchema::new("a", ConcreteDataType::int32_datatype(), false);
        let column_b = ColumnSchema::new("b", ConcreteDataType::string_datatype(), false);
        let column_c = ColumnSchema::new("c", ConcreteDataType::boolean_datatype(), false);

        let va: VectorRef = Arc::new(Int32Vector::from_slice([1, 2]));
        let vb: VectorRef = Arc::new(StringVector::from(vec!["hello", "world"]));
        let vc: VectorRef = Arc::new(BooleanVector::from(vec![true, false]));

        let schema1 = Arc::new(Schema::new(vec![column_a.clone(), column_b]));
        let batch1 = RecordBatch::new(schema1.clone(), vec![va.clone(), vb]).unwrap();

        let schema2 = Arc::new(Schema::new(vec![column_a, column_c]));
        let batch2 = RecordBatch::new(schema2.clone(), vec![va, vc]).unwrap();

        let result = RecordBatches::try_new(schema1.clone(), vec![batch1.clone(), batch2]);
        assert!(result.is_err());
        assert_eq!(
            result.unwrap_err().to_string(),
            format!(
                "Failed to create RecordBatches, reason: expect RecordBatch schema equals {schema1:?}, actual: {schema2:?}",
            )
        );

        let batches = RecordBatches::try_new(schema1.clone(), vec![batch1.clone()]).unwrap();
        let expected = "\
+---+-------+
| a | b     |
+---+-------+
| 1 | hello |
| 2 | world |
+---+-------+";
        assert_eq!(batches.pretty_print().unwrap(), expected);

        assert_eq!(schema1, batches.schema());
        assert_eq!(vec![batch1], batches.take());
    }

    #[tokio::test]
    async fn test_simple_recordbatch_stream() {
        let column_a = ColumnSchema::new("a", ConcreteDataType::int32_datatype(), false);
        let column_b = ColumnSchema::new("b", ConcreteDataType::string_datatype(), false);
        let schema = Arc::new(Schema::new(vec![column_a, column_b]));

        let va1: VectorRef = Arc::new(Int32Vector::from_slice([1, 2]));
        let vb1: VectorRef = Arc::new(StringVector::from(vec!["a", "b"]));
        let batch1 = RecordBatch::new(schema.clone(), vec![va1, vb1]).unwrap();

        let va2: VectorRef = Arc::new(Int32Vector::from_slice([3, 4, 5]));
        let vb2: VectorRef = Arc::new(StringVector::from(vec!["c", "d", "e"]));
        let batch2 = RecordBatch::new(schema.clone(), vec![va2, vb2]).unwrap();

        let recordbatches =
            RecordBatches::try_new(schema.clone(), vec![batch1.clone(), batch2.clone()]).unwrap();
        let stream = recordbatches.as_stream();
        let collected = util::collect(stream).await.unwrap();
        assert_eq!(collected.len(), 2);
        assert_eq!(collected[0], batch1);
        assert_eq!(collected[1], batch2);
    }
}