common_recordbatch/
filter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Util record batch stream wrapper that can perform precise filter.

use std::sync::Arc;

use datafusion::error::Result as DfResult;
use datafusion::logical_expr::{Expr, Literal, Operator};
use datafusion::physical_plan::PhysicalExpr;
use datafusion_common::arrow::array::{ArrayRef, Datum, Scalar};
use datafusion_common::arrow::buffer::BooleanBuffer;
use datafusion_common::arrow::compute::kernels::cmp;
use datafusion_common::cast::{as_boolean_array, as_null_array, as_string_array};
use datafusion_common::{internal_err, DataFusionError, ScalarValue};
use datatypes::arrow::array::{Array, BooleanArray, RecordBatch};
use datatypes::arrow::compute::filter_record_batch;
use datatypes::arrow::error::ArrowError;
use datatypes::compute::kernels::regexp;
use datatypes::compute::or_kleene;
use datatypes::vectors::VectorRef;
use snafu::ResultExt;

use crate::error::{ArrowComputeSnafu, Result, ToArrowScalarSnafu, UnsupportedOperationSnafu};

/// An inplace expr evaluator for simple filter. Only support
/// - `col` `op` `literal`
/// - `literal` `op` `col`
///
/// And the `op` is one of `=`, `!=`, `>`, `>=`, `<`, `<=`,
/// or regex operators: `~`, `~*`, `!~`, `!~*`.
///
/// This struct contains normalized predicate expr. In the form of
/// `col` `op` `literal` where the `col` is provided from input.
#[derive(Debug)]
pub struct SimpleFilterEvaluator {
    /// Name of the referenced column.
    column_name: String,
    /// The literal value.
    literal: Scalar<ArrayRef>,
    /// The operator.
    op: Operator,
    /// Only used when the operator is `Or`-chain.
    literal_list: Vec<Scalar<ArrayRef>>,
}

impl SimpleFilterEvaluator {
    pub fn new<T: Literal>(column_name: String, lit: T, op: Operator) -> Option<Self> {
        match op {
            Operator::Eq
            | Operator::NotEq
            | Operator::Lt
            | Operator::LtEq
            | Operator::Gt
            | Operator::GtEq => {}
            _ => return None,
        }

        let Expr::Literal(val) = lit.lit() else {
            return None;
        };

        Some(Self {
            column_name,
            literal: val.to_scalar().ok()?,
            op,
            literal_list: vec![],
        })
    }

    pub fn try_new(predicate: &Expr) -> Option<Self> {
        match predicate {
            Expr::BinaryExpr(binary) => {
                // check if the expr is in the supported form
                match binary.op {
                    Operator::Eq
                    | Operator::NotEq
                    | Operator::Lt
                    | Operator::LtEq
                    | Operator::Gt
                    | Operator::GtEq
                    | Operator::RegexMatch
                    | Operator::RegexIMatch
                    | Operator::RegexNotMatch
                    | Operator::RegexNotIMatch => {}
                    Operator::Or => {
                        let lhs = Self::try_new(&binary.left)?;
                        let rhs = Self::try_new(&binary.right)?;
                        if lhs.column_name != rhs.column_name
                            || !matches!(lhs.op, Operator::Eq | Operator::Or)
                            || !matches!(rhs.op, Operator::Eq | Operator::Or)
                        {
                            return None;
                        }
                        let mut list = vec![];
                        let placeholder_literal = lhs.literal.clone();
                        // above check guarantees the op is either `Eq` or `Or`
                        if matches!(lhs.op, Operator::Or) {
                            list.extend(lhs.literal_list);
                        } else {
                            list.push(lhs.literal);
                        }
                        if matches!(rhs.op, Operator::Or) {
                            list.extend(rhs.literal_list);
                        } else {
                            list.push(rhs.literal);
                        }
                        return Some(Self {
                            column_name: lhs.column_name,
                            literal: placeholder_literal,
                            op: Operator::Or,
                            literal_list: list,
                        });
                    }
                    _ => return None,
                }

                // swap the expr if it is in the form of `literal` `op` `col`
                let mut op = binary.op;
                let (lhs, rhs) = match (&*binary.left, &*binary.right) {
                    (Expr::Column(ref col), Expr::Literal(ref lit)) => (col, lit),
                    (Expr::Literal(ref lit), Expr::Column(ref col)) => {
                        // safety: The previous check ensures the operator is able to swap.
                        op = op.swap().unwrap();
                        (col, lit)
                    }
                    _ => return None,
                };

                let literal = rhs.to_scalar().ok()?;
                Some(Self {
                    column_name: lhs.name.clone(),
                    literal,
                    op,
                    literal_list: vec![],
                })
            }
            _ => None,
        }
    }

    /// Get the name of the referenced column.
    pub fn column_name(&self) -> &str {
        &self.column_name
    }

    pub fn evaluate_scalar(&self, input: &ScalarValue) -> Result<bool> {
        let input = input
            .to_scalar()
            .with_context(|_| ToArrowScalarSnafu { v: input.clone() })?;
        let result = self.evaluate_datum(&input, 1)?;
        Ok(result.value(0))
    }

    pub fn evaluate_array(&self, input: &ArrayRef) -> Result<BooleanBuffer> {
        self.evaluate_datum(input, input.len())
    }

    pub fn evaluate_vector(&self, input: &VectorRef) -> Result<BooleanBuffer> {
        self.evaluate_datum(&input.to_arrow_array(), input.len())
    }

    fn evaluate_datum(&self, input: &impl Datum, input_len: usize) -> Result<BooleanBuffer> {
        let result = match self.op {
            Operator::Eq => cmp::eq(input, &self.literal),
            Operator::NotEq => cmp::neq(input, &self.literal),
            Operator::Lt => cmp::lt(input, &self.literal),
            Operator::LtEq => cmp::lt_eq(input, &self.literal),
            Operator::Gt => cmp::gt(input, &self.literal),
            Operator::GtEq => cmp::gt_eq(input, &self.literal),
            Operator::RegexMatch => self.regex_match(input, false, false),
            Operator::RegexIMatch => self.regex_match(input, true, false),
            Operator::RegexNotMatch => self.regex_match(input, false, true),
            Operator::RegexNotIMatch => self.regex_match(input, true, true),
            Operator::Or => {
                // OR operator stands for OR-chained EQs (or INLIST in other words)
                let mut result: BooleanArray = vec![false; input_len].into();
                for literal in &self.literal_list {
                    let rhs = cmp::eq(input, literal).context(ArrowComputeSnafu)?;
                    result = or_kleene(&result, &rhs).context(ArrowComputeSnafu)?;
                }
                Ok(result)
            }
            _ => {
                return UnsupportedOperationSnafu {
                    reason: format!("{:?}", self.op),
                }
                .fail()
            }
        };
        result
            .context(ArrowComputeSnafu)
            .map(|array| array.values().clone())
    }

    fn regex_match(
        &self,
        input: &impl Datum,
        ignore_case: bool,
        negative: bool,
    ) -> std::result::Result<BooleanArray, ArrowError> {
        let flag = if ignore_case { Some("i") } else { None };
        let array = input.get().0;
        let string_array = as_string_array(array).map_err(|_| {
            ArrowError::CastError(format!("Cannot cast {:?} to StringArray", array))
        })?;
        let literal_array = self.literal.clone().into_inner();
        let regex_array = as_string_array(&literal_array).map_err(|_| {
            ArrowError::CastError(format!("Cannot cast {:?} to StringArray", literal_array))
        })?;
        let mut result = regexp::regexp_is_match_scalar(string_array, regex_array.value(0), flag)?;
        if negative {
            result = datatypes::compute::not(&result)?;
        }
        Ok(result)
    }
}

/// Evaluate the predicate on the input [RecordBatch], and return a new [RecordBatch].
/// Copy from datafusion::physical_plan::src::filter.rs
pub fn batch_filter(
    batch: &RecordBatch,
    predicate: &Arc<dyn PhysicalExpr>,
) -> DfResult<RecordBatch> {
    predicate
        .evaluate(batch)
        .and_then(|v| v.into_array(batch.num_rows()))
        .and_then(|array| {
            let filter_array = match as_boolean_array(&array) {
                Ok(boolean_array) => Ok(boolean_array.clone()),
                Err(_) => {
                    let Ok(null_array) = as_null_array(&array) else {
                        return internal_err!(
                            "Cannot create filter_array from non-boolean predicates"
                        );
                    };

                    // if the predicate is null, then the result is also null
                    Ok::<BooleanArray, DataFusionError>(BooleanArray::new_null(null_array.len()))
                }
            }?;
            Ok(filter_record_batch(batch, &filter_array)?)
        })
}

#[cfg(test)]
mod test {

    use std::sync::Arc;

    use datafusion::execution::context::ExecutionProps;
    use datafusion::logical_expr::{col, lit, BinaryExpr};
    use datafusion::physical_expr::create_physical_expr;
    use datafusion_common::{Column, DFSchema};
    use datatypes::arrow::datatypes::{DataType, Field, Schema};

    use super::*;

    #[test]
    fn unsupported_filter_op() {
        // `+` is not supported
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::Column(Column {
                relation: None,
                name: "foo".to_string(),
            })),
            op: Operator::Plus,
            right: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
        });
        assert!(SimpleFilterEvaluator::try_new(&expr).is_none());

        // two literal is not supported
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
            op: Operator::Eq,
            right: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
        });
        assert!(SimpleFilterEvaluator::try_new(&expr).is_none());

        // two column is not supported
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::Column(Column {
                relation: None,
                name: "foo".to_string(),
            })),
            op: Operator::Eq,
            right: Box::new(Expr::Column(Column {
                relation: None,
                name: "bar".to_string(),
            })),
        });
        assert!(SimpleFilterEvaluator::try_new(&expr).is_none());

        // compound expr is not supported
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::BinaryExpr(BinaryExpr {
                left: Box::new(Expr::Column(Column {
                    relation: None,
                    name: "foo".to_string(),
                })),
                op: Operator::Eq,
                right: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
            })),
            op: Operator::Eq,
            right: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
        });
        assert!(SimpleFilterEvaluator::try_new(&expr).is_none());
    }

    #[test]
    fn supported_filter_op() {
        // equal
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::Column(Column {
                relation: None,
                name: "foo".to_string(),
            })),
            op: Operator::Eq,
            right: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
        });
        let _ = SimpleFilterEvaluator::try_new(&expr).unwrap();

        // swap operands
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
            op: Operator::Lt,
            right: Box::new(Expr::Column(Column {
                relation: None,
                name: "foo".to_string(),
            })),
        });
        let evaluator = SimpleFilterEvaluator::try_new(&expr).unwrap();
        assert_eq!(evaluator.op, Operator::Gt);
        assert_eq!(evaluator.column_name, "foo".to_string());
    }

    #[test]
    fn run_on_array() {
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::Column(Column {
                relation: None,
                name: "foo".to_string(),
            })),
            op: Operator::Eq,
            right: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
        });
        let evaluator = SimpleFilterEvaluator::try_new(&expr).unwrap();

        let input_1 = Arc::new(datatypes::arrow::array::Int64Array::from(vec![1, 2, 3])) as _;
        let result = evaluator.evaluate_array(&input_1).unwrap();
        assert_eq!(result, BooleanBuffer::from(vec![true, false, false]));

        let input_2 = Arc::new(datatypes::arrow::array::Int64Array::from(vec![1, 1, 1])) as _;
        let result = evaluator.evaluate_array(&input_2).unwrap();
        assert_eq!(result, BooleanBuffer::from(vec![true, true, true]));

        let input_3 = Arc::new(datatypes::arrow::array::Int64Array::new_null(0)) as _;
        let result = evaluator.evaluate_array(&input_3).unwrap();
        assert_eq!(result, BooleanBuffer::from(vec![]));
    }

    #[test]
    fn run_on_scalar() {
        let expr = Expr::BinaryExpr(BinaryExpr {
            left: Box::new(Expr::Column(Column {
                relation: None,
                name: "foo".to_string(),
            })),
            op: Operator::Lt,
            right: Box::new(Expr::Literal(ScalarValue::Int64(Some(1)))),
        });
        let evaluator = SimpleFilterEvaluator::try_new(&expr).unwrap();

        let input_1 = ScalarValue::Int64(Some(1));
        let result = evaluator.evaluate_scalar(&input_1).unwrap();
        assert!(!result);

        let input_2 = ScalarValue::Int64(Some(0));
        let result = evaluator.evaluate_scalar(&input_2).unwrap();
        assert!(result);

        let input_3 = ScalarValue::Int64(None);
        let result = evaluator.evaluate_scalar(&input_3).unwrap();
        assert!(!result);
    }

    #[test]
    fn batch_filter_test() {
        let expr = col("ts").gt(lit(123456u64));
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("ts", DataType::UInt64, false),
        ]);
        let df_schema = DFSchema::try_from(schema.clone()).unwrap();
        let props = ExecutionProps::new();
        let physical_expr = create_physical_expr(&expr, &df_schema, &props).unwrap();
        let batch = RecordBatch::try_new(
            Arc::new(schema),
            vec![
                Arc::new(datatypes::arrow::array::Int32Array::from(vec![4, 5, 6])),
                Arc::new(datatypes::arrow::array::UInt64Array::from(vec![
                    123456, 123457, 123458,
                ])),
            ],
        )
        .unwrap();
        let new_batch = batch_filter(&batch, &physical_expr).unwrap();
        assert_eq!(new_batch.num_rows(), 2);
        let first_column_values = new_batch
            .column(0)
            .as_any()
            .downcast_ref::<datatypes::arrow::array::Int32Array>()
            .unwrap();
        let expected = datatypes::arrow::array::Int32Array::from(vec![5, 6]);
        assert_eq!(first_column_values, &expected);
    }

    #[test]
    fn test_complex_filter_expression() {
        // Create an expression tree for: col = 'B' OR col = 'C' OR col = 'D'
        let col_eq_b = col("col").eq(lit("B"));
        let col_eq_c = col("col").eq(lit("C"));
        let col_eq_d = col("col").eq(lit("D"));

        // Build the OR chain
        let col_or_expr = col_eq_b.or(col_eq_c).or(col_eq_d);

        // Check that SimpleFilterEvaluator can handle OR chain
        let or_evaluator = SimpleFilterEvaluator::try_new(&col_or_expr).unwrap();
        assert_eq!(or_evaluator.column_name, "col");
        assert_eq!(or_evaluator.op, Operator::Or);
        assert_eq!(or_evaluator.literal_list.len(), 3);
        assert_eq!(format!("{:?}", or_evaluator.literal_list), "[Scalar(StringArray\n[\n  \"B\",\n]), Scalar(StringArray\n[\n  \"C\",\n]), Scalar(StringArray\n[\n  \"D\",\n])]");

        // Create a schema and batch for testing
        let schema = Schema::new(vec![Field::new("col", DataType::Utf8, false)]);
        let df_schema = DFSchema::try_from(schema.clone()).unwrap();
        let props = ExecutionProps::new();
        let physical_expr = create_physical_expr(&col_or_expr, &df_schema, &props).unwrap();

        // Create test data
        let col_data = Arc::new(datatypes::arrow::array::StringArray::from(vec![
            "B", "C", "E", "B", "C", "D", "F",
        ]));
        let batch = RecordBatch::try_new(Arc::new(schema), vec![col_data]).unwrap();
        let expected = datatypes::arrow::array::StringArray::from(vec!["B", "C", "B", "C", "D"]);

        // Filter the batch
        let filtered_batch = batch_filter(&batch, &physical_expr).unwrap();

        // Expected: rows with col in ("B", "C", "D")
        // That would be rows 0, 1, 3, 4, 5
        assert_eq!(filtered_batch.num_rows(), 5);

        let col_filtered = filtered_batch
            .column(0)
            .as_any()
            .downcast_ref::<datatypes::arrow::array::StringArray>()
            .unwrap();
        assert_eq!(col_filtered, &expected);
    }
}