common_query/logical_plan/
udf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Udf module contains foundational types that are used to represent UDFs.
//! It's modified from datafusion.
use std::any::Any;
use std::fmt;
use std::fmt::{Debug, Formatter};
use std::sync::Arc;

use datafusion_expr::{
    ColumnarValue as DfColumnarValue,
    ScalarFunctionImplementation as DfScalarFunctionImplementation, ScalarUDF as DfScalarUDF,
    ScalarUDFImpl,
};
use datatypes::arrow::datatypes::DataType;

use crate::error::Result;
use crate::function::{ReturnTypeFunction, ScalarFunctionImplementation};
use crate::prelude::to_df_return_type;
use crate::signature::Signature;

/// Logical representation of a UDF.
#[derive(Clone)]
pub struct ScalarUdf {
    /// name
    pub name: String,
    /// signature
    pub signature: Signature,
    /// Return type
    pub return_type: ReturnTypeFunction,
    /// actual implementation
    pub fun: ScalarFunctionImplementation,
}

impl Debug for ScalarUdf {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("ScalarUdf")
            .field("name", &self.name)
            .field("signature", &self.signature)
            .field("fun", &"<FUNC>")
            .finish()
    }
}

impl ScalarUdf {
    /// Create a new ScalarUdf
    pub fn new(
        name: &str,
        signature: &Signature,
        return_type: &ReturnTypeFunction,
        fun: &ScalarFunctionImplementation,
    ) -> Self {
        Self {
            name: name.to_owned(),
            signature: signature.clone(),
            return_type: return_type.clone(),
            fun: fun.clone(),
        }
    }
}

#[derive(Clone)]
struct DfUdfAdapter {
    name: String,
    signature: datafusion_expr::Signature,
    return_type: datafusion_expr::ReturnTypeFunction,
    fun: DfScalarFunctionImplementation,
}

impl Debug for DfUdfAdapter {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("DfUdfAdapter")
            .field("name", &self.name)
            .field("signature", &self.signature)
            .finish()
    }
}

impl ScalarUDFImpl for DfUdfAdapter {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn signature(&self) -> &datafusion_expr::Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> datafusion_common::Result<DataType> {
        (self.return_type)(arg_types).map(|ty| ty.as_ref().clone())
    }

    fn invoke(&self, args: &[DfColumnarValue]) -> datafusion_common::Result<DfColumnarValue> {
        (self.fun)(args)
    }

    fn invoke_no_args(&self, number_rows: usize) -> datafusion_common::Result<DfColumnarValue> {
        Ok((self.fun)(&[])?.into_array(number_rows)?.into())
    }
}

impl From<ScalarUdf> for DfScalarUDF {
    fn from(udf: ScalarUdf) -> Self {
        DfScalarUDF::new_from_impl(DfUdfAdapter {
            name: udf.name,
            signature: udf.signature.into(),
            return_type: to_df_return_type(udf.return_type),
            fun: to_df_scalar_func(udf.fun),
        })
    }
}

fn to_df_scalar_func(fun: ScalarFunctionImplementation) -> DfScalarFunctionImplementation {
    Arc::new(move |args: &[DfColumnarValue]| {
        let args: Result<Vec<_>> = args.iter().map(TryFrom::try_from).collect();
        let result = fun(&args?);
        result.map(From::from).map_err(|e| e.into())
    })
}