common_query/logical_plan/
accumulator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Accumulator module contains the trait definition for aggregation function's accumulators.

use std::fmt::Debug;
use std::sync::Arc;

use datafusion_common::Result as DfResult;
use datafusion_expr::Accumulator as DfAccumulator;
use datatypes::arrow::array::ArrayRef;
use datatypes::prelude::*;
use datatypes::vectors::{Helper as VectorHelper, VectorRef};
use snafu::ResultExt;

use crate::error::{self, Error, FromScalarValueSnafu, IntoVectorSnafu, Result};
use crate::prelude::*;

pub type AggregateFunctionCreatorRef = Arc<dyn AggregateFunctionCreator>;

/// An accumulator represents a stateful object that lives throughout the evaluation of multiple rows and
/// generically accumulates values.
///
/// An accumulator knows how to:
/// * update its state from inputs via `update_batch`
/// * convert its internal state to a vector of scalar values
/// * update its state from multiple accumulators' states via `merge_batch`
/// * compute the final value from its internal state via `evaluate`
///
/// Modified from DataFusion.
pub trait Accumulator: Send + Sync + Debug {
    /// Returns the state of the accumulator at the end of the accumulation.
    // in the case of an average on which we track `sum` and `n`, this function should return a vector
    // of two values, sum and n.
    fn state(&self) -> Result<Vec<Value>>;

    /// updates the accumulator's state from a vector of arrays.
    fn update_batch(&mut self, values: &[VectorRef]) -> Result<()>;

    /// updates the accumulator's state from a vector of states.
    fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()>;

    /// returns its value based on its current state.
    fn evaluate(&self) -> Result<Value>;
}

/// An `AggregateFunctionCreator` dynamically creates `Accumulator`.
///
/// An `AggregateFunctionCreator` often has a companion struct, that
/// can store the input data types (impl [AggrFuncTypeStore]), and knows the output and states
/// types of an Accumulator.
pub trait AggregateFunctionCreator: AggrFuncTypeStore {
    /// Create a function that can create a new accumulator with some input data type.
    fn creator(&self) -> AccumulatorCreatorFunction;

    /// Get the Accumulator's output data type.
    fn output_type(&self) -> Result<ConcreteDataType>;

    /// Get the Accumulator's state data types.
    fn state_types(&self) -> Result<Vec<ConcreteDataType>>;
}

/// `AggrFuncTypeStore` stores the aggregate function's input data's types.
///
/// When creating Accumulator generically, we have to know the input data's types.
/// However, DataFusion does not provide the input data's types at the time of creating Accumulator.
/// To solve the problem, we store the datatypes upfront here.
pub trait AggrFuncTypeStore: Send + Sync + Debug {
    /// Get the input data types of the Accumulator.
    fn input_types(&self) -> Result<Vec<ConcreteDataType>>;

    /// Store the input data types that are provided by DataFusion at runtime (when it is evaluating
    /// return type function).
    fn set_input_types(&self, input_types: Vec<ConcreteDataType>) -> Result<()>;
}

pub fn make_accumulator_function(
    creator: Arc<dyn AggregateFunctionCreator>,
) -> AccumulatorFunctionImpl {
    Arc::new(move || {
        let input_types = creator.input_types()?;
        let creator = creator.creator();
        creator(&input_types)
    })
}

pub fn make_return_function(creator: Arc<dyn AggregateFunctionCreator>) -> ReturnTypeFunction {
    Arc::new(move |input_types| {
        creator.set_input_types(input_types.to_vec())?;

        let output_type = creator.output_type()?;
        Ok(Arc::new(output_type))
    })
}

pub fn make_state_function(creator: Arc<dyn AggregateFunctionCreator>) -> StateTypeFunction {
    Arc::new(move |_| Ok(Arc::new(creator.state_types()?)))
}

/// A wrapper type for our Accumulator to DataFusion's Accumulator,
/// so to make our Accumulator able to be executed by DataFusion query engine.
#[derive(Debug)]
pub struct DfAccumulatorAdaptor {
    accumulator: Box<dyn Accumulator>,
    creator: AggregateFunctionCreatorRef,
}

impl DfAccumulatorAdaptor {
    pub fn new(accumulator: Box<dyn Accumulator>, creator: AggregateFunctionCreatorRef) -> Self {
        Self {
            accumulator,
            creator,
        }
    }
}

impl DfAccumulator for DfAccumulatorAdaptor {
    fn state(&mut self) -> DfResult<Vec<ScalarValue>> {
        let state_values = self.accumulator.state()?;
        let state_types = self.creator.state_types()?;
        if state_values.len() != state_types.len() {
            return error::BadAccumulatorImplSnafu {
                err_msg: format!("Accumulator {self:?} returned state values size do not match its state types size."),
            }
            .fail()?;
        }
        Ok(state_values
            .into_iter()
            .zip(state_types.iter())
            .map(|(v, t)| v.try_to_scalar_value(t).context(error::ToScalarValueSnafu))
            .collect::<Result<Vec<_>>>()?)
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> DfResult<()> {
        let vectors = VectorHelper::try_into_vectors(values).context(FromScalarValueSnafu)?;
        self.accumulator.update_batch(&vectors)?;
        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> DfResult<()> {
        let mut vectors = Vec::with_capacity(states.len());
        for array in states.iter() {
            vectors.push(
                VectorHelper::try_into_vector(array).context(IntoVectorSnafu {
                    data_type: array.data_type().clone(),
                })?,
            );
        }
        self.accumulator.merge_batch(&vectors)?;
        Ok(())
    }

    fn evaluate(&mut self) -> DfResult<ScalarValue> {
        let value = self.accumulator.evaluate()?;
        let output_type = self.creator.output_type()?;
        let scalar_value = value
            .try_to_scalar_value(&output_type)
            .context(error::ToScalarValueSnafu)
            .map_err(Error::from)?;
        Ok(scalar_value)
    }

    fn size(&self) -> usize {
        0
    }
}