common_query/
logical_plan.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

pub mod accumulator;
mod expr;
mod udaf;
mod udf;

use std::sync::Arc;

use datafusion::catalog::CatalogProviderList;
use datafusion::error::Result as DatafusionResult;
use datafusion::logical_expr::{LogicalPlan, LogicalPlanBuilder};
use datafusion_common::Column;
use datafusion_expr::col;
use datatypes::prelude::ConcreteDataType;
pub use expr::{build_filter_from_timestamp, build_same_type_ts_filter};

pub use self::accumulator::{Accumulator, AggregateFunctionCreator, AggregateFunctionCreatorRef};
pub use self::udaf::AggregateFunction;
pub use self::udf::ScalarUdf;
use crate::error::Result;
use crate::function::{ReturnTypeFunction, ScalarFunctionImplementation};
use crate::logical_plan::accumulator::*;
use crate::signature::{Signature, Volatility};

/// Creates a new UDF with a specific signature and specific return type.
/// This is a helper function to create a new UDF.
/// The function `create_udf` returns a subset of all possible `ScalarFunction`:
/// * the UDF has a fixed return type
/// * the UDF has a fixed signature (e.g. [f64, f64])
pub fn create_udf(
    name: &str,
    input_types: Vec<ConcreteDataType>,
    return_type: Arc<ConcreteDataType>,
    volatility: Volatility,
    fun: ScalarFunctionImplementation,
) -> ScalarUdf {
    let return_type: ReturnTypeFunction = Arc::new(move |_| Ok(return_type.clone()));
    ScalarUdf::new(
        name,
        &Signature::exact(input_types, volatility),
        &return_type,
        &fun,
    )
}

pub fn create_aggregate_function(
    name: String,
    args_count: u8,
    creator: Arc<dyn AggregateFunctionCreator>,
) -> AggregateFunction {
    let return_type = make_return_function(creator.clone());
    let accumulator = make_accumulator_function(creator.clone());
    let state_type = make_state_function(creator.clone());
    AggregateFunction::new(
        name,
        Signature::any(args_count as usize, Volatility::Immutable),
        return_type,
        accumulator,
        state_type,
        creator,
    )
}

/// Rename columns by applying a new projection. Returns an error if the column to be
/// renamed does not exist. The `renames` parameter is a `Vector` with elements
/// in the form of `(old_name, new_name)`.
pub fn rename_logical_plan_columns(
    enable_ident_normalization: bool,
    plan: LogicalPlan,
    renames: Vec<(&str, &str)>,
) -> DatafusionResult<LogicalPlan> {
    let mut projection = Vec::with_capacity(renames.len());

    for (old_name, new_name) in renames {
        let old_column: Column = if enable_ident_normalization {
            Column::from_qualified_name(old_name)
        } else {
            Column::from_qualified_name_ignore_case(old_name)
        };

        let (qualifier_rename, field_rename) =
            match plan.schema().qualified_field_from_column(&old_column) {
                Ok(qualifier_and_field) => qualifier_and_field,
                Err(err) => return Err(err),
            };

        for (qualifier, field) in plan.schema().iter() {
            if qualifier.eq(&qualifier_rename) && field.as_ref() == field_rename {
                projection.push(col(Column::from((qualifier, field))).alias(new_name));
            }
        }
    }

    LogicalPlanBuilder::from(plan).project(projection)?.build()
}

/// The datafusion `[LogicalPlan]` decoder.
#[async_trait::async_trait]
pub trait SubstraitPlanDecoder {
    /// Decode the [`LogicalPlan`] from bytes with the [`CatalogProviderList`].
    /// When `optimize` is true, it will do the optimization for decoded plan.
    ///
    /// TODO(dennis): It's not a good design for an API to do many things.
    /// The `optimize` was introduced because of `query` and `catalog` cyclic dependency issue
    /// I am happy to refactor it if we have a better solution.
    async fn decode(
        &self,
        message: bytes::Bytes,
        catalog_list: Arc<dyn CatalogProviderList>,
        optimize: bool,
    ) -> Result<LogicalPlan>;
}

pub type SubstraitPlanDecoderRef = Arc<dyn SubstraitPlanDecoder + Send + Sync>;

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use datafusion_common::DFSchema;
    use datafusion_expr::builder::LogicalTableSource;
    use datafusion_expr::{
        lit, ColumnarValue as DfColumnarValue, ScalarUDF as DfScalarUDF,
        TypeSignature as DfTypeSignature,
    };
    use datatypes::arrow::array::BooleanArray;
    use datatypes::arrow::datatypes::{DataType, Field, Schema, SchemaRef};
    use datatypes::prelude::*;
    use datatypes::vectors::{BooleanVector, VectorRef};

    use super::*;
    use crate::error::Result;
    use crate::function::{make_scalar_function, AccumulatorCreatorFunction};
    use crate::prelude::ScalarValue;
    use crate::signature::TypeSignature;

    #[test]
    fn test_create_udf() {
        let and_fun = |args: &[VectorRef]| -> Result<VectorRef> {
            let left = &args[0]
                .as_any()
                .downcast_ref::<BooleanVector>()
                .expect("cast failed");
            let right = &args[1]
                .as_any()
                .downcast_ref::<BooleanVector>()
                .expect("cast failed");

            let result = left
                .iter_data()
                .zip(right.iter_data())
                .map(|(left, right)| match (left, right) {
                    (Some(left), Some(right)) => Some(left && right),
                    _ => None,
                })
                .collect::<BooleanVector>();
            Ok(Arc::new(result) as VectorRef)
        };

        let and_fun = make_scalar_function(and_fun);

        let input_types = vec![
            ConcreteDataType::boolean_datatype(),
            ConcreteDataType::boolean_datatype(),
        ];

        let return_type = Arc::new(ConcreteDataType::boolean_datatype());

        let udf = create_udf(
            "and",
            input_types.clone(),
            return_type.clone(),
            Volatility::Immutable,
            and_fun.clone(),
        );

        assert_eq!("and", udf.name);
        assert!(
            matches!(&udf.signature.type_signature, TypeSignature::Exact(ts) if ts.clone() == input_types)
        );
        assert_eq!(return_type, (udf.return_type)(&[]).unwrap());

        // test into_df_udf
        let df_udf: DfScalarUDF = udf.into();
        assert_eq!("and", df_udf.name());

        let types = vec![DataType::Boolean, DataType::Boolean];
        assert!(
            matches!(&df_udf.signature().type_signature, DfTypeSignature::Exact(ts) if ts.clone() == types)
        );
        assert_eq!(
            DataType::Boolean,
            df_udf
                .return_type_from_exprs(&[], &DFSchema::empty(), &[])
                .unwrap()
        );

        let args = vec![
            DfColumnarValue::Scalar(ScalarValue::Boolean(Some(true))),
            DfColumnarValue::Array(Arc::new(BooleanArray::from(vec![true, false, false, true]))),
        ];

        // call the function
        let result = (df_udf.fun())(&args).unwrap();

        match result {
            DfColumnarValue::Array(arr) => {
                let arr = arr.as_any().downcast_ref::<BooleanArray>().unwrap();
                for i in 0..4 {
                    assert_eq!(i == 0 || i == 3, arr.value(i));
                }
            }
            _ => unreachable!(),
        }
    }

    #[derive(Debug)]
    struct DummyAccumulator;

    impl Accumulator for DummyAccumulator {
        fn state(&self) -> Result<Vec<Value>> {
            Ok(vec![])
        }

        fn update_batch(&mut self, _values: &[VectorRef]) -> Result<()> {
            Ok(())
        }

        fn merge_batch(&mut self, _states: &[VectorRef]) -> Result<()> {
            Ok(())
        }

        fn evaluate(&self) -> Result<Value> {
            Ok(Value::Int32(0))
        }
    }

    #[derive(Debug)]
    struct DummyAccumulatorCreator;

    impl AggrFuncTypeStore for DummyAccumulatorCreator {
        fn input_types(&self) -> Result<Vec<ConcreteDataType>> {
            Ok(vec![ConcreteDataType::float64_datatype()])
        }

        fn set_input_types(&self, _: Vec<ConcreteDataType>) -> Result<()> {
            Ok(())
        }
    }

    impl AggregateFunctionCreator for DummyAccumulatorCreator {
        fn creator(&self) -> AccumulatorCreatorFunction {
            Arc::new(|_| Ok(Box::new(DummyAccumulator)))
        }

        fn output_type(&self) -> Result<ConcreteDataType> {
            Ok(self.input_types()?.into_iter().next().unwrap())
        }

        fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
            Ok(vec![
                ConcreteDataType::float64_datatype(),
                ConcreteDataType::uint32_datatype(),
            ])
        }
    }

    fn mock_plan() -> LogicalPlan {
        let schema = Schema::new(vec![
            Field::new("id", DataType::Int32, true),
            Field::new("name", DataType::Utf8, true),
        ]);
        let table_source = LogicalTableSource::new(SchemaRef::new(schema));

        let projection = None;

        let builder =
            LogicalPlanBuilder::scan("person", Arc::new(table_source), projection).unwrap();

        builder
            .filter(col("id").gt(lit(500)))
            .unwrap()
            .build()
            .unwrap()
    }

    #[test]
    fn test_rename_logical_plan_columns() {
        let plan = mock_plan();
        let new_plan =
            rename_logical_plan_columns(true, plan, vec![("id", "a"), ("name", "b")]).unwrap();

        assert_eq!(
            r#"
Projection: person.id AS a, person.name AS b
  Filter: person.id > Int32(500)
    TableScan: person"#,
            format!("\n{:?}", new_plan)
        );
    }

    #[test]
    fn test_create_udaf() {
        let creator = DummyAccumulatorCreator;
        let udaf = create_aggregate_function("dummy".to_string(), 1, Arc::new(creator));
        assert_eq!("dummy", udaf.name);

        let signature = udaf.signature;
        assert_eq!(TypeSignature::Any(1), signature.type_signature);
        assert_eq!(Volatility::Immutable, signature.volatility);

        assert_eq!(
            Arc::new(ConcreteDataType::float64_datatype()),
            (udaf.return_type)(&[ConcreteDataType::float64_datatype()]).unwrap()
        );
        assert_eq!(
            Arc::new(vec![
                ConcreteDataType::float64_datatype(),
                ConcreteDataType::uint32_datatype(),
            ]),
            (udaf.state_type)(&ConcreteDataType::float64_datatype()).unwrap()
        );
    }
}