common_query/
function.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::Arc;

use datafusion_expr::ReturnTypeFunction as DfReturnTypeFunction;
use datatypes::arrow::datatypes::DataType as ArrowDataType;
use datatypes::prelude::{ConcreteDataType, DataType};
use datatypes::vectors::VectorRef;
use snafu::ResultExt;

use crate::error::{ExecuteFunctionSnafu, Result};
use crate::logical_plan::Accumulator;
use crate::prelude::{ColumnarValue, ScalarValue};

/// Scalar function
///
/// The Fn param is the wrapped function but be aware that the function will
/// be passed with the slice / vec of columnar values (either scalar or array)
/// with the exception of zero param function, where a singular element vec
/// will be passed. In that case the single element is a null array to indicate
/// the batch's row count (so that the generative zero-argument function can know
/// the result array size).
pub type ScalarFunctionImplementation =
    Arc<dyn Fn(&[ColumnarValue]) -> Result<ColumnarValue> + Send + Sync>;

/// A function's return type
pub type ReturnTypeFunction =
    Arc<dyn Fn(&[ConcreteDataType]) -> Result<Arc<ConcreteDataType>> + Send + Sync>;

/// Accumulator creator that will be used by DataFusion
pub type AccumulatorFunctionImpl = Arc<dyn Fn() -> Result<Box<dyn Accumulator>> + Send + Sync>;

/// Create Accumulator with the data type of input columns.
pub type AccumulatorCreatorFunction =
    Arc<dyn Fn(&[ConcreteDataType]) -> Result<Box<dyn Accumulator>> + Sync + Send>;

/// This signature corresponds to which types an aggregator serializes
/// its state, given its return datatype.
pub type StateTypeFunction =
    Arc<dyn Fn(&ConcreteDataType) -> Result<Arc<Vec<ConcreteDataType>>> + Send + Sync>;

/// decorates a function to handle [`ScalarValue`]s by converting them to arrays before calling the function
/// and vice-versa after evaluation.
pub fn make_scalar_function<F>(inner: F) -> ScalarFunctionImplementation
where
    F: Fn(&[VectorRef]) -> Result<VectorRef> + Sync + Send + 'static,
{
    Arc::new(move |args: &[ColumnarValue]| {
        // first, identify if any of the arguments is an vector. If yes, store its `len`,
        // as any scalar will need to be converted to an vector of len `len`.
        let len = args
            .iter()
            .fold(Option::<usize>::None, |acc, arg| match arg {
                ColumnarValue::Scalar(_) => acc,
                ColumnarValue::Vector(v) => Some(v.len()),
            });

        // to array
        // TODO(dennis):  we create new vectors from Scalar on each call,
        //                            should be optimized in the future.
        let args: Result<Vec<_>> = if let Some(len) = len {
            args.iter()
                .map(|arg| arg.clone().try_into_vector(len))
                .collect()
        } else {
            args.iter()
                .map(|arg| arg.clone().try_into_vector(1))
                .collect()
        };

        let result = (inner)(&args?);

        // maybe back to scalar
        if len.is_some() {
            result.map(ColumnarValue::Vector)
        } else {
            Ok(ScalarValue::try_from_array(&result?.to_arrow_array(), 0)
                .map(ColumnarValue::Scalar)
                .context(ExecuteFunctionSnafu)?)
        }
    })
}

pub fn to_df_return_type(func: ReturnTypeFunction) -> DfReturnTypeFunction {
    let df_func = move |data_types: &[ArrowDataType]| {
        // DataFusion DataType -> ConcreteDataType
        let concrete_data_types = data_types
            .iter()
            .map(ConcreteDataType::from_arrow_type)
            .collect::<Vec<_>>();

        // evaluate ConcreteDataType
        let eval_result = (func)(&concrete_data_types);

        // ConcreteDataType -> DataFusion DataType
        eval_result
            .map(|t| Arc::new(t.as_arrow_type()))
            .map_err(|e| e.into())
    };
    Arc::new(df_func)
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use datatypes::prelude::{ScalarVector, Vector};
    use datatypes::vectors::BooleanVector;

    use super::*;

    #[test]
    fn test_make_scalar_function() {
        let and_fun = |args: &[VectorRef]| -> Result<VectorRef> {
            let left = &args[0]
                .as_any()
                .downcast_ref::<BooleanVector>()
                .expect("cast failed");
            let right = &args[1]
                .as_any()
                .downcast_ref::<BooleanVector>()
                .expect("cast failed");

            let result = left
                .iter_data()
                .zip(right.iter_data())
                .map(|(left, right)| match (left, right) {
                    (Some(left), Some(right)) => Some(left && right),
                    _ => None,
                })
                .collect::<BooleanVector>();
            Ok(Arc::new(result) as VectorRef)
        };

        let and_fun = make_scalar_function(and_fun);

        let args = vec![
            ColumnarValue::Scalar(ScalarValue::Boolean(Some(true))),
            ColumnarValue::Vector(Arc::new(BooleanVector::from(vec![
                true, false, false, true,
            ]))),
        ];

        let vec = (and_fun)(&args).unwrap();

        match vec {
            ColumnarValue::Vector(vec) => {
                let vec = vec.as_any().downcast_ref::<BooleanVector>().unwrap();

                assert_eq!(4, vec.len());
                for i in 0..4 {
                    assert_eq!(i == 0 || i == 3, vec.get_data(i).unwrap(), "Failed at {i}")
                }
            }
            _ => unreachable!(),
        }
    }
}